节点文献
2(R,S)中的 Parsimonious-矩阵
Parsimonious-matrices in A 2(R,S)
【摘要】 设A2(R,S)是所有具有指定行和向量R与列和向量S的(0,1,2)-矩阵组成的集合.A2(R,S)中正元素个数最少的矩阵称为是Parsimonious-矩阵.本文主要研究A2(R,S)中Parsimonious-矩阵的性质,并给出一种找出Parsimonious-矩阵的简捷算法.
【Abstract】 Let A 2(R,s)be the class of all (0,1,2)-matrices with a prescribed row sum vector R and column sum vector S. A (0,1,2)-matrix A in A 2(R,S)is defined to be parsimonious iff A has the smallest number of positive entries amorg all (0,1,2)-matrices in A 2(R,S). We study some properties of parsimonious-matrices and find a way that how to obtain a parsimonious-matrix in A 2(R,S).
【关键词】 2(R.S);
Parsimonious-矩阵;
Constellation-矩阵;
1-型矩阵;
(hk,pq)-变换;
【Key words】 A 2(R,S); Parsimonious-matrix; Constellation-matrix; 1-pattern matrix; (hk,pq)-Change;
【Key words】 A 2(R,S); Parsimonious-matrix; Constellation-matrix; 1-pattern matrix; (hk,pq)-Change;
- 【文献出处】 广东工业大学学报 ,JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY , 编辑部邮箱 ,1999年01期
- 【分类号】O151.21
- 【下载频次】12