节点文献

热连轧轧制力模型系数回归的新方法

New Regressive Method of Coefficients of Mathematical Models of Rolling Load in Hot Strip Mill

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王秀梅王国栋刘相华邹天来张弓李洪斌

【Author】 Wang Xiumei ①,Wang Guodong ①,Liu Xianghua ①,Zou Tianlai ②,Zhang Gong ②,Li Hongbin ② (①?The State Key Laboratory of Rolling and Automation, Northeastern University, Shengyang 110006, China;?②?Benxi Iron and Steel Co. ,Benxi 117001,China)

【机构】 东北大学轧制技术及连轧自动化国家重点实验室!沈阳110006本溪钢铁公司!本溪117001

【摘要】 热连轧过程中,为了提高轧制力预设定精度,提出一种新的修改轧制力模型参数的方法·利用BP 神经网络对以往的大量生产数据进行训练、预测·对BP 神经网络的预测结果利用最小二乘法,回归出轧制力模型中的温度相关系数m 1 和变形速度相关系数m 3·现场生产实验证明,应用修改后的轧制力模型系数,提高了轧制力预设定精度,从而使头部厚度精度有较大提高·对于象本溪钢铁公司热连轧厂这样的老企业,这种新方法更具有在线应用的可行性·

【Abstract】 A new method of modifying parameters of the rolling load models was developed to improve the precision of predicted rolling load in a hot strip mill. Measured data of on line production were used to train and test the BP neural networks. The coefficient m 1 and m 3 , which relate to strip temperature and deforming rate in the rolling load models respectively,were regressed by means of the least square method according to the predictions of the BP neural networks. The field experiment indicates that, after putting the modified parameters into use, the precision of predicted rolling load is improved, so the strip head end accuracy is much better. The new method shows potential in the on line applications for some long service equipments such as Benxi Hot Strip Mill.

【基金】 国家“九五”科技攻关项目
  • 【文献出处】 东北大学学报 ,JOURNAL OF NORTHEASTERN UNIVERSITY , 编辑部邮箱 ,1999年05期
  • 【分类号】TG335.11
  • 【被引频次】17
  • 【下载频次】255
节点文献中: 

本文链接的文献网络图示:

本文的引文网络