节点文献
具有变系数的2n+1阶中立型微分方程正解的存在性
Existence of Positive Solutions for 2n+1 Order Neutral Differential Equations with a Minor Variable Coefficient
【摘要】 本文利用 Knaster不动点定理,Levi引理,给出具有变系数 P(t)的 2n+ 1阶中立型微分 方程[x(t)-p(t)x(t-2)]2n+1+f(t,x(t-τ1(t)),…,x(t-τm(t))=0正解存在的几个充分 条件.本文结果部分地回答了文21提出的问题.
【Abstract】 In this paper, by Using the Knaster fixed Point theorem the levi lemma, we have given come sufficient of existence of positive solutions for 2n + 1 order neutral differential equations With n is a nonnegtive ingeger and P(t) is a voriable Coefficient. The results obtained answer partially an open problen in [1].
【关键词】 变系数;
2n+1阶中立型微分方程;
正解的存在性;
【Key words】 Variable Coefficient; 2n + 1 Order neutral differential equations; existence of positive solutions;
【Key words】 Variable Coefficient; 2n + 1 Order neutral differential equations; existence of positive solutions;
- 【文献出处】 吉林师范学院学报 , 编辑部邮箱 ,1999年05期
- 【分类号】O175.7
- 【下载频次】18