节点文献

一种轻量化的自适应时频分析网络

A lightweight adaptive time-frequency analysis network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 崔明哲陈韬罗晨谢磊苏宏业

【Author】 Mingzhe Cui;Tao Chen;Chen Luo;Lei Xie;Hongye Su;State Key Laboratory of Industrial Control Technology,Zhejiang University;

【机构】 浙江大学工业控制技术国家重点实验室

【摘要】 本文提出了一种基于深度学习的轻量化自适应时频分析网络,为非平稳信号提供了高分辨时频表达。网络首先通过短时滤波模块自适应学习基函数并与信号内积以生成时频特征映射,然后将轻量化通道注意力机制嵌入模块,重新放缩时频特征以提高后续能量集中性能,之后通过能量集中模块实现信号的高分辨率时频表达。此外,通过对网络结构以及卷积方式的调整实现网络整体模型的轻量化。最后通过一系列模拟仿真与真实信号仿真,验证了该网络的优越性与泛化性。

【Abstract】 a lightweight adaptive time-frequency analysis network based on deep learning is proposed to provide high-resolution time-frequency representations for nonstationary signals.The network first adaptively learns basic functions through a shorttime filtering module and generates time-frequency feature mappings by taking inner products with the signal.Then,the lightweight channel attention mechanism is embedded into the module to rescale the time-frequency feature to improve the subsequent energy concentration performance.Subsequently,the high-resolution time-frequency representation of the signal is achieved through the energy concentration module.In addition,the overall network model is lightweight by adjusting the network structure and convolution method.Finally,a series of simulated and real signal simulations validate the superiority and generalization of this network.

  • 【会议录名称】 第43届中国控制会议论文集(16)
  • 【会议名称】第43届中国控制会议
  • 【会议时间】2024-07-28
  • 【会议地点】中国云南昆明
  • 【分类号】TP18
  • 【主办单位】中国自动化学会控制理论专业委员会(Technical Committee on Control Theory, Chinese Association of Automation)、中国自动化学会(Chinese Association of Automation)、中国系统工程学会(Systems Engineering Society of China)
节点文献中: 

本文链接的文献网络图示:

本文的引文网络