节点文献
基于多目标强化学习的水下无人潜航器路径规划
Path Planning of Unmanned Underwater Vehicle Based on Multi-objective Reinforcement Learning
【Author】 Zhang Yu;YANG Cai-Pei;Zhao Ying-Qi;Liu Jie;Wei Wei;Wuhan Second Ship Design and Research Institute;School of Artificial Intelligence and Automation,Huazhong University of Science and Technology;School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology;
【机构】 武汉第二船舶设计研究院; 华中科技大学人工智能与自动化学院; 华中科技大学土木与水利工程学院;
【摘要】 面向高随机、多动态障碍物复杂环境下的路径规划任务,提出了一种基于多目标强化学习的水下无人潜航器路径规划方法。首先,在考虑随机目标与多动态障碍物的路径规划主场景基础上,构建多个子目标(动态避障、目标接近)场景;其次,提出基于集成学习与PER-DDQN的路径规划框架;最后,利用人工势场法改进并优化路径规划框架的多目标策略集成方式。实验结果表明,相比于传统路径规划方法,该方法具有更高的路径规划成功率和更短的路径长度。
【Abstract】 Aiming at the path planning task in the complex environment with high randomness and multiple dynamic obstacles,a path planning method for unmanned underwater vehicle based on multi-objective reinforcement learning is proposed.First,on the basis of the main scenario of path planning considering random targets and multiple dynamic obstacles,multiple sub-target(dynamic obstacle avoidance,target approaching) scenarios are constructed;a path planning framework based on ensemble learning and PER-DDQN is further proposed;finally,using The artificial potential field method improves and optimizes the multi-objective strategy integration method of the path planning framework.The experimental results show that,compared with the traditional path planning method,this method has higher path planning success rate and shorter path length.
【Key words】 path planning; unmanned underwater vehicle; policy integration; multi-objective reinforcement learning;
- 【会议录名称】 第十届中国指挥控制大会论文集(上册)
- 【会议名称】第十届中国指挥控制大会
- 【会议时间】2022-08-17
- 【会议地点】中国北京
- 【分类号】U674.941
- 【主办单位】中国指挥与控制学会(Chinese Institute of Command and Control)