节点文献
基于强化学习的自适应变步长机器人路径规划算法
An Adaptive Variable Stepsizes Algorithm for Path Planning Based on Reinforcement Learning
【Author】 Tu Ziran Wang Wei Liang Yiye YU Jianli Department of Mathematics and Physics, He Nan University of Science & Technology Luoyang, 471003; Institute of Electrification & information Engineering,He Nan University of Science & Technology, Luoyang,471003
【机构】 河南科技大学数理系; 河南科技大学电子信息工程学院;
【摘要】 强化学习一词源于行为科学,它模仿人与动物的自然学习过程,通过对环境的反复试探,从而建立从环境状态到行为动作的映射。本文针对基于神经网络结构的机器人全局路径规划算法,利用强化学习的思想, 引进评价预测学习的自适应变步长算法,实现了步长的自动调节,并且加快了路径规划的计算速度,通过仿真试验,表明了所提算法的有效性。
【Abstract】 Reinforcement learning is an important class of learning techniques that learns to perform a certain task through trial and error interactions with an knowledge-poor environment. This paper studies the problem of adaptive variable stepsize of robotic path planning. The proposed method here using critic prediction learning penalty allows to perform on-line adaptive variance of stepsizes, and the convergence speed of path planning is at least increased bv 10 times more than former’s.
【Key words】 Learning algorithm; Global path planning; Adaptive variable stepsize;
- 【会议录名称】 2003年中国智能自动化会议论文集(上册)
- 【会议名称】2003年中国智能自动化会议
- 【会议时间】2003-12
- 【会议地点】中国香港
- 【分类号】TP242
- 【主办单位】中国自动化学会智能自动化专业委员会