节点文献
一种新的概念格结构:粗糙概念格
A New Concept Lattice Structure: Rough Concept Lattice
【Author】 Yang Haifeng Zhang Jifu School of Computer Science and Technology, Tai-Yuan University of Science and Technology, Tai-Yuan 030024 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080
【机构】 太原科技大学计算机科学与技术学院;
【摘要】 概念格是数据分析与知识提取的一种有效工具,由于概念格的完备性及精确性,采用概念格提取不确定知识存在较大的局限性。粗糙集理论是处理不确定性知识的一种有效数学工具。为了提高概念格的知识提取的能力,使其能够处理不确定性知识,本文针对决策形式背景,采用粗集理论中上下近似来描述内涵所拥有的外延,给出了一种新的概念格结构:粗糙概念格。并在此基础上给出了一种粗糙概念格的构造方法,从而加强了概念格处理不确定性知识的能力。
【Abstract】 Concept lattice is an effective tool for data analysis and knowledge discovery. It is very limited in mining uncertainty knowledge because of its completeness and accuracy. The theory of rough sets is an effective mathematic tool for dealing with uncertainty knowledge. In order to improve the ability of knowledge discovery of concept lattice, to deal with uncertainty knowledge, Rough Concept Lattice is proposed in this paper which is based on Decision Context. Using the approximation method of rough sets, it describes the "extent" as approximation extent. A construction method is provided based on it. It improved the ability of deal with uncertainty knowledge.
【Key words】 concept Lattice; rough sets; rough concept lattice; decision context;
- 【会议录名称】 计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(上册)
- 【会议名称】全国第17届计算机科学与技术应用(CACIS)学术会议
- 【会议时间】2006-07
- 【会议地点】中国山西太原
- 【分类号】TP182
- 【主办单位】中国仪器仪表学会(CIS)、中国仪器仪表学会微型计算机应用学会(CACIS)、中国系统仿真学会复杂系统建模与仿真计算专业委员会筹备处(CSSC)