节点文献

重要抽样法在模糊可靠性设计中的应用

The Application of Importance Sampling Method in Fuzzy Reliability Design

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘建峰董玉革高亮

【Author】 Liu Jianfeng, Dong Yuge, Gao Liang (School of Mechanical & Automotive Engineering, Heifei University of Technology, Heifei, 230009, China)

【机构】 合肥工业大学机械与汽车工程学院

【摘要】 本文讨论了在模糊可靠性设计中已知线性模糊强度和正态随机应力时,通过重要抽样法来计算零件可靠度的方法。首先把模糊变量转化成当量随机变量,然后用遗传算法计算设计点,最后通过建立重要抽样密度函数对(当量)随机变量重新抽样来计算零件的可靠度, 并通过算例比较了重要抽样法和蒙特卡罗法的计算结果,验证了方法的可行性和效率。

【Abstract】 In this paper, a method how to compute the part’s reliability based on importance sampling of fuzzy variables is discussed when strength is a linear fuzzy variable and stress is a Gauss random variable. Firstly, in order to sample a fuzzy variable, the fuzzy variable is transformed to random variable. Secondly, in order to establish important sampling density function more effectively, the genetic algorithm is used to calculate the design point. Finally, the reliability of a part is calculated by using important sampling method. An example is given to compare the results by using the method put in this paper with those by Monte Carlo Method. The example proves that it is feasible and effective for the method put forwards in the paper.

【基金】 国家自然科学基金项目(50375042)
  • 【会议录名称】 2006年全国机械可靠性学术交流会论文集
  • 【会议名称】2006年全国机械可靠性学术交流会
  • 【会议时间】2006-08
  • 【会议地点】中国江苏扬州
  • 【分类号】TH122
  • 【主办单位】中国机械工程学会可靠性工程分会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络