节点文献

基于人工鱼群算法RBF神经网络

RBF neural networks based on artificial fish-swarm algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘耀年姚玉萍李迎红刘俊峰

【Author】 Liu Yaonian Yao Yuping Li Yinghong Liu Junfeng (Northeast China Institute of Electric Power Engineering,Jilin 132012)

【机构】 东北电力学院电气工程学院

【摘要】 人工鱼群算法是一种新型的寻优策略,文中将人工鱼群算法用于 RBF 神经网络的训练过程,建立了相应的优化模型,算法与 BP 算法、RBF 算法进行比较,结果表明人工鱼群算法具有鲁棒性强,全局收敛性好,以及对初值的不敏感等特点。

【Abstract】 Artificial fish-swarm algorithm(AFSA)is a novel optimizing method proposed lately.An Artificial Fish-swarm Algorithm (AFSA)for the RBF neural networks and a model based on this method were presented of the first time here.Compared with the Back-propagation Algorithm added momentum and the RBF Algorithm,optimization result of RBF neural networks by AFSA demonstrates that AFSA has a strong robustness and good global astringency.AFSA is also proved to be initial values.

  • 【会议录名称】 第十届全国电工数学学术年会论文集
  • 【会议名称】第十届全国电工数学学术年会
  • 【会议时间】2005-08
  • 【会议地点】中国吉林延边
  • 【分类号】TP183
  • 【主办单位】中国电机工程学会电工数学专业委员会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络