节点文献
蓄热式加热炉钢温智能预报与炉温优化设定
Billet temperature intelligent prediction and furnace temperature optimal setting of regenerative reheating furnace
【Author】 LIU Xiao-zhi ZHAO Zhong-lei QIN Shu-kai College of Information Science and Engineering,Northeastern University,Shenyang 110004,China.
【机构】 东北大学 信息科学与工程学院;
【摘要】 基于钢坯在炉内受热辐射和非稳态传热的有限差分法中的数学方法.建立了一维非稳态导热钢温预报模型,并给出了适用该模型的炉温优化策略.利用遗传算法进行全局寻优来确定未知参数,从而避免产生不好的预报结果.该模型能够对钢坯进行网格化钢温预报,能够实现炉内钢坯温度分布的在线预报.仿真结果表明钢温预报结果精度高.且炉温优化使钢坯加热质量得到提高.
【Abstract】 Based on the heat radiation and mathematics method of finite difference method of unsteady heat conduction, a billet temperature prediction model is designed by using one-dimension unsteady heat conduction method.The strategy of furnace temperature optimal setting based on this model is also presented.Global optimization with genetic algorithms is used to determine the unknown parameters and thus a bad prediction is avoided.The model can give a grid of billet temperature prediction,the online forecasting for the distribution of billet temperature in furnace can be achieved.Moreover,simulations results show that the model has high precision and the optimal setting of furnace temperature can greatly improve the billets heat quality.
【Key words】 Regenerative reheating furnace; Mathematic model; Genetic algorithm; Furnace temperature optimal setting;
- 【会议录名称】 2007中国控制与决策学术年会论文集
- 【会议名称】2007中国控制与决策学术年会
- 【会议时间】2007-07
- 【会议地点】中国江苏无锡
- 【分类号】TP273.5
- 【主办单位】《控制与决策》编辑委员会、中国航空学会自动控制分会、中国自动化学会应用专业委员会