节点文献

基于改进PSO算法优化LSSVM的模拟电路软故障诊断方法

Analog circuit soft fault diagnosis based on LSSVM optimized by improved PSO

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 丁国君王立德申萍刘彪

【Author】 DING Guojun,WANG Lide,SHEN Ping,LIU Biao (School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044,China)

【机构】 北京交通大学电气工程学院

【摘要】 针对容差模拟电路软故障,提出一种基于多群体协同混沌粒子群算法优化最小二乘支持向量机的故障诊断模型。首先,对模拟电路采集信号进行小波分析预处理;然后,提取特征信息作为样本输入LSSVM进行分类决策,并运用多群体协同混沌粒子群算法对LSSVM的结构参数进行优化。仿真实验结果表明:该模型具有较高的诊断正确率,可用于模拟电路的软故障诊断。

【Abstract】 In order to diagnose the tolerance analog circuit soft fault,fault diagnosis model combining multi-swarm cooperative chaos particle swarm optimization(MCCPSO) algorithm with the least square support vector machine (LSSVM) was proposed.The acquisition signal was preprocessed by wavelet analysis.And the feature information as the sample was input LSSVM for classification decision.MCCPSO was used for optimizing structure parameters of LSSVM. The simulation result shows that the proposed model has high diagnosis accuracy,and it can be applied to tolerance analog circuit fault diagnosis.

【基金】 中央高校基本科研业务费专项资金资助项目(E11JB00310);清华大学汽车安全与节能国家重点实验室开放基金资助项目(KF11142)
  • 【会议录名称】 2013年中国智能自动化学术会议论文集(第四分册)
  • 【会议名称】2013年中国智能自动化学术会议
  • 【会议时间】2013-08-24
  • 【会议地点】中国江苏扬州
  • 【分类号】TN710;TP18
  • 【主办单位】中国自动化学会智能自动化专业委员会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络