节点文献

基于BP神经网络的城市轨道交通车辆可靠性预测

Reliability prediction of urban rail transit vehicle based on BP neural network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李建伟程晓卿秦勇张媛邢宗义

【Author】 LI Jianwei~1,CHENG Xiaoqing~2,QIN Yong~2,ZHANG Yuan~2,XING Zongyi~3 (1.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China; 2.State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100044,China; 3.School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)

【机构】 南京理工大学机械工程学院北京交通大学 轨道交通控制与安全国家重点实验室南京理工大学自动化学院

【摘要】 针对传统可靠性预测方法对非线性故障数据预测效果较差的特点,采用BP神经网络对城市轨道交通车辆的可靠性进行预测。首先,介绍可靠性常用指标和可靠性预测模型:然后,建立BP神经网络三层模型,输入层到中间层采用S型正切函数,中间层到输出层采用线性函数,并采用基于梯度下降法与高斯牛顿法结合的反传算法作为学习函数:最后,利用广州地铁故障数据进行仿真分析。研究结果表明:预测效果较佳,相关性为0.900 69。

【Abstract】 As the traditional reliability prediction methods for nonlinear fault data are poor,BP neural network was applied to predict the reliability of urban rail transit vehicles.Firstly,the common reliability index and the reliability prediction models were introduced.Then a three layers model of BP neural network was built.In the model,the S-shaped tangent function was used in the input layer to the middle layer,while linear function was used in the middle layer to the output layer.Also in the model,Levenberg-Marquadt back-propagation algorithm was used as the learning function. Finally,the Guangzhou subway fault data was used for simulation analysis.The results show that the prediction is accurate and the correlation coefficient can reach 0.900 69.

【关键词】 BP神经网络可靠性故障率预测
【Key words】 BP neural networkreliabilityfailure rateprediction
【基金】 国家高技术研究发展计划(“863”计划)项目(2011AA110501);国家科技支撑计划项目(2011BAG01B05)
  • 【会议录名称】 2013年中国智能自动化学术会议论文集(第四分册)
  • 【会议名称】2013年中国智能自动化学术会议
  • 【会议时间】2013-08-24
  • 【会议地点】中国江苏扬州
  • 【分类号】TP183;U279
  • 【主办单位】中国自动化学会智能自动化专业委员会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络