节点文献

基于信度分配的并行集成CMAC及其在建模中的应用

Credit-assignment-based parallel ensemble CMAC and its applications in modeling

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 潘晔顾幸生卢胜利

【Author】 PAN Ye~1,GU Xing-sheng~1,LU Sheng-li~2 (1.Research Institute of Automation,East China University of Science and Technology,Shanghai 200237,China; 2.Department of Automation Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)

【机构】 华东理工大学自动化研究所天津工程师范学院自动化工程系

【摘要】 Albus CMAC(cerebella model articulation controller)神经网络是一种模拟人类小脑学习结构的小脑模型关节控制器,它具有很强的记忆与输出泛化能力,但对于在线学习来说,Albus CMAC仍难满足快速性的要求.本文在常规CMAC神经网络的基础上,针对其在学习精度与存储容量之间的矛盾,引入信度分配概念,提出了一种基于信度分配的并行集成CMAC.它将大规模网络切割为多个子网络分别训练后再组合,大大地提高了计算效率.通过对复杂非线性函数建模的仿真研究表明,该方案提高了系统建模的泛化能力和算法的收敛速度.文章最后讨论了学习常数和泛化参数对该神经网络在线学习效果的影响.

【Abstract】 Albus CMAC(cerebella-model-articulation-controller) is a neural network that simulates the structure of the human cerebella and performs the articulation controller.Although it has a large memory capability and is capable of output generalization,Albus CMAC is still hard to meet the requirements of rapidity for online learning.To solve the conflict between the accuracy and memory capability of Albus CMAC,we introduce the concept of credit assignment and propose the parallel ensemble CMAC based on credit assignment.A large-scale network is separated into several subnetworks; these sub-networks are trained synchronously,and then are combined.It greatly improves the computational efficiency.In simulating the model of the complex nonlinear function,results show that the proposed scheme improves the generalization capability of the system model and raises the convergence rate of the improved arithmetic.Finally,how the learning parameter and the generalized parameter influence the effect of online learning of this neural network is discussed.

【基金】 上海市基础研究重点项目(08JC1408200):国家自然科学基金资助项目(60772167);国家“863”高技术研究发展计划项目(2009AA04Z141)
  • 【会议录名称】 2009年中国智能自动化会议论文集(第八分册)[控制理论与应用(专刊)]
  • 【会议名称】2009年中国智能自动化会议
  • 【会议时间】2009-09-27
  • 【会议地点】中国江苏南京
  • 【分类号】TP183
  • 【主办单位】中国自动化学会智能自动化专业委员会、江苏省自动化学会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络