节点文献
基于分裂-凝聚的Web新闻主题聚类算法
Divisive-Agglomerative Based Clustering Algorithms for Mining Topic from Web News
【机构】 东华大学信息科学与技术学院;
【摘要】 <正>1简介在大多数Web页面中,大量的有用的知识隐藏在Web文本中。对于这些海量的文本数据,利用挖掘工具有效地把文本数据组织成为结构化的知识,将会显著地提高Web页面访问效率。Web已经变
【Abstract】 Given the popularity of Web news services,we focus our attention on mining hierarchical topic from Web news stream data.To address this problem,we present a Divisive-Agglomerative clustering method to find hierarchical topic from Web news stream.The novelty of the proposed algorithm is the ability to identify meaningful news topics while reducing the amount of computations by maintaining dynamic cluster structure incrementally.Our streaming news clustering algorithm also works by leveraging off the nearest neighbors of the incoming streaming news datasets and has ability of identifying the different shapes and different densities of clusters.Experimental results demonstrate that the proposed clustering algorithm produces high-quality topic discovery.
- 【会议录名称】 第二十二届中国数据库学术会议论文集(技术报告篇)
- 【会议名称】第二十二届中国数据库学术会议
- 【会议时间】2005-08-19
- 【会议地点】中国内蒙古呼和浩特
- 【分类号】TP393.09
- 【主办单位】中国计算机学会数据库专业委员会