节点文献
基于立方体计算的关键梯度分析
Significant Gradients Mining Based on Data Cube Computation
【Author】 YU Hui~(1,2) TANG Shi-Wei~(1,2) YANG Dong-Qing~1 Li Nan~1 (School of Electronics Engineering and Computer Science,Peking University,Beijing 100871)1 (National Laboratory on Machine Perception,Peking University,Beijing 100871)2
【机构】 北京大学信息科学技术学院; 北京大学视觉与听觉信息处理国家重点实验室;
【摘要】 梯度分析是数据仓库和联机分析处理中的一项重要分析任务,在决策支持中发挥着重要作用。本文根据实际应用的需要,提出了一种新颖的关键梯度分析方法。借助立方体计算中的计数排序和分割策略,通过扩展补充路径,并利用插入排序方法,实现了高效的关键梯度分析算法。在模拟数据上进行了大量的实验,结果证明了算法的高效性和实用性。
【Abstract】 Gradient analysis is an important data analysis task in data warehousing and online analytical processing, which has played an important role in the application of decision support.In this paper,we consider a novel type of gradient analysis,significant gradient analysis.Significant gradient analysis is expressive,capable of capturing trends in data and answering"what-if"questions.The problem of mining significant gradients is challenging since the significant gradients can be widely scattered in the cube lattice,and do not present any monotonicity.We extend the state-of-the-art cube computation algorithm to tackle the problem and develop techniques to speed up the search. An extensive performance study is reported to illustrate the effect of our approach.
【Key words】 Significant gradients; Gradient analysis; Cube computation; Data warehousing; Online analytical processing;
- 【会议录名称】 第二十二届中国数据库学术会议论文集(研究报告篇)
- 【会议名称】第二十二届中国数据库学术会议
- 【会议时间】2005-08-19
- 【会议地点】中国内蒙古呼和浩特
- 【分类号】TP311.13
- 【主办单位】中国计算机学会数据库专业委员会