节点文献

基于基因表达式编程的抗噪声数据的函数挖掘方法

An Anti-Noise Method for Function Mining Based on GEP

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 段磊唐常杰左劼陈宇钟义啸元昌安

【Author】 DUAN Lei,TANG Chang-Jie,ZUO Jie,CHEN Yu,ZHONG Yi-Xiao,and YUAN Chang-An (School of Computer Science,Sichuan University,Chengdu 610065)

【机构】 四川大学计算机学院

【摘要】 用传统基因表达式编程(GEP)适应度机制挖掘函数关系容易受到噪声干扰,导致结果失真.为此做了如下探索:①借鉴生物具有的"趋利避害"天性,提出了GEP的"弱适应模型",以实现在含噪声的数据集上挖掘函数关系;②提出新概念"带内集"、"带外集"并用于划分训练数据集;③设计了在弱适应模型下基于相对误差计算适应度的算法REFA;④用详尽的实验验证了REFA的有效性,当测量数据的噪声率为3.33%时,与传统方法相比,REFA方法的成功率提高了3倍,产生结果的平均相对误差从7.899%降低到2.320%.

【Abstract】 Mining functions from experimental data based on traditional gene expression programming (GEP) fitness mechanism falls short in handling noises,which may lead to anamorphic results.The contributions of this paper include:(1)Proposing a new concept called weak-adaptive model(WAM) based on GEP to break the limitation,which is enlightened by the biologic nature known as"seek advantage, avoid disadvantage";(2)Presenting new concepts"In-Band set"and"Out-Band set"for partitioning the training data set;(3)Designing a new approach called Relative Error Fitness Algorithm(REFA) to mine functions in terms of WAM;and(4)By using extensive experiments demonstrating the effectiveness of REFA.The results show that when mining functions in a dataset with 3.33%noise data,REFA increases the success-probability by 3 times and decreases the average relative error from 7.899%to 2.320% compared with the traditional approach.

【基金】 国家自然科学基金项目(60073046);高等学校博士学科点专项科研基金SRFDP项目(20020610007)
  • 【会议录名称】 第二十一届中国数据库学术会议论文集(研究报告篇)
  • 【会议名称】第二十一届中国数据库学术会议
  • 【会议时间】2004-10-14
  • 【会议地点】中国福建厦门
  • 【分类号】TP311.13
  • 【主办单位】中国计算机学会数据库专业委员会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络