节点文献
基于量子计算多Agent系统理论的人工神经网络训练方法
A Novel Artificial Neural Network Training Method Based on Quantum Computational Multi-Agent System Theory
【Author】 Meng Xiang-ping~1 Wei Ben-yan~2 Yu Xue-fang~3 Yuan Quan-de~1 Pi Yu-zhen~1 (1.Changchun Institute of Technology,Department of Electrical Engineering,Jilin,Changchun,130012) (2.Northeast Dianli University,Information engineering institute,Jilin,132012;3.Northeast Dianli University,Electrical engineering institute,Jilin,132012)
【机构】 长春工程学院电信学院; 东北电力大学信息工程学院; 东北电力大学电气工程学院;
【摘要】 人工神经网络是可用于建模、探讨各种复杂非线性现象的强大工具。本文提出了一种新的基于多Agent系统理论(MAS)和量子算法的人工神经网络。在该人工神经网络中所有节点都为有学习能力的量子计算Agent(QCMAS)。通过训练QCMAS强化学习,提出了新的人工神经训练方法。新的人工神经具有强大的并行工作能力而且它的训练时间比经典算法短,实验结果证明了该方法的有效性。
【Abstract】 Artificial Neural Networks are powerful tools that can be used to model and investigate various complex and non-linear phenomena.In this study,we construct a new ANN,which is based on Multi-Agent System(MAS) theory and quantum computing algorithm.All nodes in this new ANN are presented as Quantum Computational(QC) agents,and these agents have learning ability.A novel ANN training method was proposed via implementing QCMAS reinforcement learning.This new ANN has powerful parallel-work ability and its training time is shorter than classic algorithm.Experiment results show that this method is effective.
【Key words】 ANN; Multi-Agent System(MAS); Q-learning; Quantum Computing;
- 【会议录名称】 ’2010系统仿真技术及其应用学术会议论文集
- 【会议名称】’2010系统仿真技术及其应用学术会议
- 【会议时间】2010-08-01
- 【会议地点】中国吉林长春
- 【分类号】TP183
- 【主办单位】中国自动化学会系统仿真专业委员会、中国系统仿真学会仿真技术应用专业委员会