节点文献

支持向量回归的连续过松弛训练算法研究

Research on Successive Over Relaxation Training Algorithm for Support Vector Regression

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 林关成李亚安李国辉

【Author】 LIN Guan-cheng~(1,2),LI Ya-an~1,LI Guo-hui~1 (1.School of Marine Engineering,Northwestern Polytechnical University,Xi’an,710072,China; 2.Department of Media and Communications Engineering,Weinan Teachers College,Weinan 714000,Shaanxi)

【机构】 西北工业大学航海学院渭南师范学院传媒工程系

【摘要】 针对支持向量回归(Support Vector Regression,SVR)的传统训练算法在大样本下内存开销大、训练速度慢的缺点,在分析SVR数学形式的基础上,充分利用二次规划自身的结构特点,将阈值量引入支持向量回归的目标函数中,采用扩展变形的方法,提出了一种用于SVR的简化连续过松弛(Successive Over Relaxation,SOR)训练算法,并将其与传统的训练算法进行对比。仿真结果表明,简化的SOR算法是可行、有效的。它在保证拟合精度的情况下,克服了传统训练算法对系统内存要求较高的缺陷,减少了训练时间,提高了运算效率。

【Abstract】 For the shortcomings of the traditional training algorithm for support vector regression under the large data sets,it proposes a simplified successive over relaxation training algorithm for SVR using expansion and deformation method based on the analysis of SVR mathematical form.The algorithm makes full use of the structural characteristics of quadratic programming and the threshold quantity was introduced in the objective function of support vector regression.Thus it compared with the traditional training algorithm.The simulation results show that the simplified SOR algorithm is feasible and effective.In the case of ensuring fitting accuracy it overcomes the shortcomings of higher system memory requirements for the traditional training methods,reduces the training time and improves the computational efficiency.

【基金】 渭南师范学院科研基金资助项目(08YKZ012)
  • 【会议录名称】 2010’中国西部声学学术交流会论文集
  • 【会议名称】2010’中国西部声学学术交流会
  • 【会议时间】2010-08
  • 【会议地点】中国云南腾冲
  • 【分类号】TP181
  • 【主办单位】陕西省声学学会、上海声学学会、中国声学学会物理声学分会、中国声学学会超声电子学分会、四川省声学学会、重庆声学学会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络