节点文献

基于EMD样本熵的轴承故障信号复杂性度量

Bearing Fault Signal Complexity Measure Based on EMD Sample Entropy

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 胡赤兵楼军伟王季李贵子

【Author】 HU Chibing~1,LOU Junwei~1,WANG Ji~2,LI Guizi~2 (1.School of Mechanical and Electronical Engineering,Lanzhou University of Technology, Lanzhou,730050 China;2.Key Laboratory of Mechanical Product Testing and Technical Evaluation of Gansu Province,Lanzhou,730030 China)

【机构】 兰州理工大学机电工程学院甘肃省机械产品检测与技术评价重点实验室

【摘要】 针对常用的傅里叶变换、小波变换等在分析滚动轴承故障信号时存在难以度量复杂性的局限,采用经验模态分解(EMD)结合样本熵来改进。通过对不同损伤程度的滚动轴承信号应用样本熵和EMD样本熵的实际效果进行比较。发现样本熵值过于接近不易区分,而EMD样本熵值差别准确性更高,并且其变化趋势与故障信号随损伤变化的趋势一致。

【Abstract】 Aiming at commonly used Fourier Transform,Wavelet Transform etc were difficult to measure the complexity in analysising the rolling bearing signal,using EMD combined with sample entropy to improve.By comparing the actual effect of sample entropy and EMD sample entropy were used in different damage levels of rolling bearing singal.Finding that the sample entropy too close to distinguish,but the EMD sample entropy obviously different and higher exact and the changing trend was consistent with the damage changing trend.

【关键词】 EMD样本熵滚动轴承复杂性
【Key words】 EMDsample entropyrolling bearingcomplexity
  • 【会议录名称】 创新装备技术 给力地方经济——第三届全国地方机械工程学会学术年会暨海峡两岸机械科技论坛论文集
  • 【会议名称】创新装备技术 给力地方经济——第三届全国地方机械工程学会学术年会暨海峡两岸机械科技论坛
  • 【会议时间】2013-10-11
  • 【会议地点】中国海南三亚
  • 【分类号】TH165.3;TN911.7
  • 【主办单位】海南省机械工程学会
节点文献中: 

本文链接的文献网络图示:

本文的引文网络