节点文献
油气管道机器人整体结构与运动控制研究
Analysis of Overall Structure and Motion Control of Oil and Gas Pipeline Robot
【作者】 李飞;
【导师】 叶林征;
【作者基本信息】 中北大学 , 机械硕士(专业学位), 2024, 硕士
【摘要】 在石油、天然气等关键能源传输领域,管道运输被广泛应用。然而,在长期的服役过程中,油气管道会出现腐蚀、破孔或裂缝等问题,这些问题可能导致油气泄漏,还可能引发严重的安全事故。鉴于人工维护的高成本和低效率,采用管道机器人对油气管道进行检测和维护变得尤为重要。本课题紧密围绕实际需求,针对油气管道检测这一核心问题,深入研究了能够在管道内部自主行走并高效完成检测任务的机器人技术。首先对机器人整体做了分析,采用了三组周向120°均匀分布的履带式行走方式,研究使用以丝杠螺母的主动变径方式。通过分析管道机器人的内外阻力,得出每个履带阻力矩约为1.55 N·m,每组履带电机输出功率为7.2 W,确定了电机参数。建立管道机器人行走机构力学模型,得出了单个行走机构的驱动力和驱动力矩公式,根据公式对影响机器人牵引力的因素做了具体分析。通过对管径适应机构建立力学模型,得到了丝杆电机的输出扭矩公式,由公式得出支撑杆与水平轴的夹角α变化范围15.8°~69.7°,从动杆与水平轴的夹角β变化范围23.4°~76.2°,机器人变径范围为260~340 mm,根据公式分析了影响丝杆电机的输出扭矩的因素。接着建立了管道障碍模型,得出机器人最高越障高度7.5 mm。通过建立机器人过弯的动态模型,采用分段式的方法,对机器人通过90°弯道的运动过程进行了分析。得出了机器人在过渡阶段和旋转阶段的轨迹方程和速度方程。得出机器人在过渡阶段速度比为vf1:vf2:vf3=1:1.5:1.82。在旋转阶段速度比为n1:n2:n3=1:1.56:2.125。并对管道机器人过弯过程做了运动规划。通过分析两种极限位置得出机器人几何约束条件,带入参数得极限宽度dmax=240 mm,极限长度rmax=252 mm。最后,结合运动约束和几何约束条件,对管道机器人在弯管中的通过性和直管中的越障进行了仿真实验验证。管道机器人的控制系统研究主要包括硬件和软件。通过对比分析三种机器人控制系统,在PC-单片机控制系统的基础上,使用了树莓派4B作为视频图形的采集和PC与单片机信息传输的中枢。主控芯片选择STM32F103ZET6芯片,驱动芯片采用了TB6612四驱稳压模块。障碍检测采用了三组HC-SR04P超声波模块,通信模块采用HC-05蓝牙通信模块。根据机器人需要满足的功能和需求,对电机驱动,摄像头开启关闭,串口通信,蓝牙通信等进行了编写,通过串口助手进行调参与修改,实现了机器人在管道中的行走检测,数据传输功能。最后对机器人控制交互界面进行了开发与调试。根据研究的整体方案以及机器人结构、力学分析和运动学规划得出的理论依据,采用模块化的方法对管道机器人进行了样机制作与试验。对管道机器人的控制系统和通过性能进行了测试检验。测试结果表明,机器人最大撑壁直径可以达到345mm,最小收缩直径为260 mm,在此基础上,机器人能够实现在管内的正常行走,运行速度约为4.2 m/min。管道机器人可以通过7.8 mm以下的环形障碍,并且顺利通过90°弯管,没有出现卡死现象。证明了本论文研究的管道机器人能够适应管道复杂的环境,在管道内正常行走且有较强的通过性能。机器人越障功能与管径自适应功能提升了机器人的检测效率。为后续管道机器人的开发研究提供了重要的基础。
【Abstract】 In key energy transmission fields,for example,the oil and natural gas transmission,pipeline transportation is widely used.However,oil and gas pipelines can run into the problems such as corrosion,holes or cracks in the long-term service process,which may lead to oil and gas leakage,and may also lead to serious safety accidents.Because of the high cost and low efficiency of manual maintenance,pipeline robots are of great importance to inspect and maintain oil and gas pipelines.This paper focuses on the actual demand,aiming at the core problem of oil and gas pipeline inspection,and deeply studies the robot technology that can walk autonomously inside the pipeline and efficiently complete the inspection task.Firstly,the whole robot is analyzed.Three groups of track-type walking modes with120° uniform circumferential distribution are adopted.A pre-loaded spring is added between the lead screw and the nut on the basis of the lead screw and the nut,and the active and passive reducing methods are combined.By analyzing the internal and external resistance of the pipeline robot,the resistance moment of each track is about 1.55 N m,the output power of each group of track motors is 7.2 W,and the motor parameters are determined.Through the establishment of the mechanical model of the walking mechanism of pipeline robot,the formula of driving force and driving moment of a single walking mechanism is obtained.The establishment of a mechanical model of the pipe diameter adaptation mechanism brings the output torque formula of the lead screw motor.According to the formula,15.8°~69.7° is the variation range of the Angle α between the support rod and the horizontal axis,the variation range of the Angle β between the driven rod and the horizontal axis is 23.4°~76.2°,and the diameter reduction range of the robot is260~340 mm.The factors are analyzed from the formula.These factors affect the output torque of the lead screw motor.Then the pipeline obstacle model is established,and the maximum obstacle crossing height of the robot is 7.5mm.The motion process of the robot through the 90° curve is analyzed according to the establishment of the dynamic model of the robot through the curve and using the segmented method.The trajectory and velocity equations of the robot in transition and rotation stages are obtained.The velocity ratio of the robot in the transition stage is vf1: vf2:vf3=1:1:5:1.82.In the rotation phase,the velocity ratio is n1: n2:n3=1:1.56:2.125.The motion planning of pipeline robot bending process is also done.The geometric constraints of the robot are obtained by analyzing the two limit positions,and the limit width dmax=240 mm and the limit length rmax=252 mm are obtained by introducing the parameters.Finally,the passage of pipe robot in bending pipe and obstacle crossing in straight pipe are verified by simulation experiments combined with kinematic and geometric constraints.The hardware and software are mainly studied in the control system of pipeline robot.Through the comparison and analysis of the control system of three kinds of robots,the Raspberry PI 4B is choosen as the center of video graphics acquisition and information transmission between PC and microcontroller based on the PC-microcontroller control system.STM32F103ZET6 chip aand TB6612 four-drive voltage regulator module are selected as the main control chip and the driver chip respectively.Three sets of HC-SR04 P ultrasonic modules are used for obstacle detection,and HC-05 Bluetooth communication module is used for communication module.According to the functions and requirements that the robot needs to meet,the motor drive,camera on and off,serial communication,Bluetooth communication,etc.,are programmed,and the serial assistant is used to adjust and participate in modification,realizing the robot’s walking detection in the pipeline and data transmission functions.Finally,the robot control interface is developed and debugged.According to the overall scheme of the research and the theoretical basis which is obtained from the robot structure,mechanics analysis and kinematics planning.At the same time,the pipeline robots is made and tested through adopting the modular method.The tests and verify are carried out about the control system and passage capacity.The results show that the maximum wall diameter of the robot can reach 345 mm,and the minimum shrinking diameter is 260 mm.On this basis,the robot can realize normal walking in the tube,and the running speed is about 4.2 m/min.The pipe robot can pass through a ring obstacle below 7.8mm,and successfully pass through a 90° bend without getting stuck.All of above can be used to prove a point: the pipeline robot studied in this paper can walk normally in the pipeline and have strong passing performance in the complex environment of the pipeline.The obstacle crossing function of the robot and the adaptive function of the pipe diameter improve the detection efficiency of the robot.It provides an important foundation for the subsequent development and research of pipeline robots.
【Key words】 pipeline robot; mechanical analysis; Kinematic characteristic analysis; control system; prototyping testing;
- 【网络出版投稿人】 中北大学 【网络出版年期】2025年 04期
- 【分类号】TE973;TP242