节点文献

六足机器人步态规划与控制系统研究

Research on Gait Planning and Control System of Hexapod Robot

【作者】 张杰

【导师】 高征; 张建政;

【作者基本信息】 河北大学 , 电子信息硕士(专业学位), 2023, 硕士

【摘要】 六足机器人在各类地形中都拥有优秀的运动能力,具有较高的稳定性。作为一个高度非线性系统,六足机器人的步态规划较为复杂,一直都是相关领域的重点研究对象。常用的步态规划无法充分发挥六足机器人复杂环境的适应能力,本文研究并设计出一种基于改进摆线算法的足端轨迹规划,增强了机器人复杂环境的适应能力。首先,基于实际使用需求,使用Solidworks设计六足机器人整体和单腿的物理模型;对六足机器人的运动相关理论进行分析,基于D-H法的建模理论,完成对六足机器人的正运动学建模,使用解析法对逆运动学求解;使用蒙特卡洛数值分析法计算足端工作空间,得到足端工作空间约束;为下文的研究作理论基础。其次,根据机器人控制系统实际使用需求进行硬件平台搭建以及软件系统设计。硬件平台控制核心使用能搭载Linux系统的树莓派,安装机器人ROS系统与上位机PC的ROS系统进行实时通信,树莓派接收上位机指令,并进行解算得到机器人的步态规划,将步态规划传输给STM32控制板,STM32接收信息对舵机进行驱动,并将传感器采集的数据信息通过树莓派返回给上位机,形成闭环控制。对各个硬件模块进行电源设计。同时对机器人进行软件设计,搭建开发环境,编写代码,完成控制系统设计。再次,分析机器人常用的步态模式,设计一种基于改进摆线算法的足端轨迹规划,使得机器人足端在离地和触地的瞬间加速度为零,与常用的足端轨迹对比,减少对腿部和机体的冲击力,增加运动稳定性;使用零力矩点(ZMP)作为六足机器人的稳定性判定方法;在改进的足端轨迹规划的基础上设计崎岖地形的行走步态规划,增加崎岖地形的适应性。最后,通过MATLAB/Simulink和Solidworks进行联合仿真,搭建仿真环境,进行三角步态行走,验证了设计的改进摆线算法的足端轨迹相比常用足端轨迹算法运动性能更好;并对改进摆线算法的足端轨迹进行不同步长和步高的仿真验证,得出最优的步态参数;最终进行六足机器人的样机实验,进行平坦和崎岖地形行走,验证了设计的步态规划和控制系统的可行性。

【Abstract】 Hexapod robots have excellent motion and high stability in all types of terrain.As a highly nonlinear system,the gait planning of hexapod robots is complex and has been the focus of research in related fields.In this paper,a foot-end trajectory planning method based on an improved pendulum algorithm is designed to enhance the adaptation capability of the robot to complex environments.First,based on the actual use requirements,the physical models of the hexapod robot as a whole and single leg are designed using Solidworks;the motion-related theories of the hexapod robot are analyzed,and the positive kinematic modeling of the hexapod robot is completed based on the modeling theory of the D-H method,and the inverse kinematic solution is solved using the analytical method;the foot-end workspace is calculated using Monte Carlo numerical analysis,and the foot-end workspace is obtained The theoretical basis for the following study is provided.Second,the hardware platform and software system are designed according to the actual requirements of the robot control system.The hardware platform control core uses the Raspberry Pi,which can carry Linux system,and installs the robot ROS system to communicate with the ROS system of the host PC in real time.The Raspberry Pi receives the commands from the host PC,and solves them to get the gait plan of the robot,and transmits the gait plan to the STM32 control board,and the STM32 receives the information to drive the servo,and returns the data information collected by the sensors to the host PC through the Raspberry Pi.The STM32 receives the information to drive the servo,and returns the data information collected by the sensors to the host computer through the Raspberry Pi,forming a closed-loop control.The power supply design is performed for each hardware module.At the same time,the software design of the robot is carried out,the development environment is built,and the code is written to complete the control system design.Again,analyze the common gait patterns of the robot,design a foot-end trajectory planning method based on the improved cycloid algorithm,so that the acceleration of the robot’s foot-end at the instant of leaving and touching the ground is zero,which reduces the impact on the legs and the body and increases the stability of the motion compared with the common foot-end trajectory;use the zero moment point(ZMP)as the stability determination method of the six-legged robot;design the walking trajectory for rugged terrain on the basis of the improved foot-end trajectory planning The walking gait planning of rugged terrain is designed based on the improved foot-end trajectory planning to increase the adaptability to rugged terrain.Finally,the joint simulation by MATLAB/Simulink and Solidworks is used to build a simulation environment and perform triangular gait walking to verify that the designed footend trajectory of the improved pendulum algorithm has better motion performance compared with the commonly used foot-end trajectory algorithm;and the foot-end trajectory of the improved pendulum algorithm is simulated and verified with different step lengths and step heights to derive the optimal gait parameters;finally,the Finally,the prototype experiment of the six-legged robot was conducted to walk on flat and rugged terrain to verify the feasibility of the designed gait planning and control system.

  • 【网络出版投稿人】 河北大学
  • 【网络出版年期】2024年 11期
  • 【分类号】TP242;TP273
节点文献中: 

本文链接的文献网络图示:

本文的引文网络