节点文献

富含晶格氧空位FeCo2O4 QDs/β-FeOOH纳米复合物的制备及其活化PMS降解水中甲硝唑的效能与机制

Construction of Lattice-oxygen-vacancy-rich FeCo2O4 QDS/β-FeOOH Nanocomposites and Their Efficacy and Mechanism for Activating PMS to Degrade Metronidazole in Water

【作者】 刘宏伟

【导师】 任何军;

【作者基本信息】 吉林大学 , 环境工程, 2022, 硕士

【摘要】 利用尖晶石相FeCo2O4活化过一硫酸盐(PMS)技术净化废水中有机污染物,具有广阔的应用前景。为了进一步提高FeCo2O4活化PMS的效能,本文应用形貌调控和晶格氧空位(VOs)调整策略制备了富含八面体CO(Ⅱ)的FeCo2O4量子点/β-Fe OOH纳米片复合物(CO(Ⅱ)-FCQDs/FNS),以增强PMS活化来高效降解水中甲硝唑(MNZ)。探究了该催化剂结构与催化性能之间的构效关系,揭示了晶格氧空位衍生的八面体CO(Ⅱ)对PMS活化的增强机制。本文主要研究成果如下:(1)利用形貌调控和晶格氧空位调整策略制备出了具有增强PMS活化性能的新型FeCo2O4催化剂:即新型改性FeCo2O4量子点催化剂(CO(Ⅱ)-FCQDs/FNS)。系列表征证明CO(Ⅱ)-FCQDs/FNS的形貌是富含八面体CO(Ⅱ)的FeCo2O4量子点锚定在具有花状层次结构的β-Fe OOH纳米片上。(2)CO(Ⅱ)-FCQDs/FNS具有较高的PMS利用率(62.90%)。在对MNZ的降解反应中,低浓度的MNZ(C0[MNZ]<30 mg/L)可以在5 min内完全分解,高浓度MNZ(100 mg/L)的分解率在40分钟时也能达到99.92%,且降解速率常数kobs是FCQDs/PMS体系的~6.45倍。(3)电子顺磁共振(EPR)和猝灭实验表明PMS/CO(Ⅱ)-FCQDs/FNS体系是纯自由基(硫酸根自由基(SO4·-)和羟基自由基(·OH))的氧化过程。DFT理论计算表明:由晶格氧空位衍生的八面体CO(Ⅱ):(1)可以改善催化剂晶格内部的电荷转移,即沿着CO(Ⅱ)-O-Fe(II)键;(2)加速金属离子的氧化还原循环;(3)增强HSO5-在FeCo2O4上的表面吸附,进而增强对PMS的活化能力。

【Abstract】 The use of spinel FeCo2O4-activated peroxymonosulfate(PMS)technology for the purification of organic pollutants in wastewater has promising applications.In order to further improve the effectiveness of FeCo2O4-activated PMS,FeCo2O4quantum dot/β-Fe OOH nanosheet complexes(CO(Ⅱ)-FCQDs/FNS)enriched with octahedral CO(Ⅱ)were prepared in this paper to boost PMS activation for the efficient degradation of metronidazole(MNZ)in water by applying morphology modulation and lattice oxygen vacancy(VOs)adjustment strategies.The conformational relationship between the catalyst structure and catalytic performance was investigated,and the mechanism of boosted activation of PMS by lattice oxygen vacancy-derived octahedral CO(Ⅱ)was revealed.The main findings of this paper are as follows.(1)A new FeCo2O4catalyst with boosted PMS activation properties was prepared using a morphology modulation and lattice oxygen vacancy adjustment strategy:namely,a new modified FeCo2O4quantum dot catalyst(CO(Ⅱ)-FCQDs/FNS).A series of characterizations demonstrated that the morphology of CO(Ⅱ)-FCQDs/FNS is that of octahedral CO(Ⅱ)-rich FeCo2O4quantum dots anchored onβ-Fe OOH nanosheets with a flower-like hierarchical structure.(2)CO(Ⅱ)-FCQDs/FNS had a high PMS utilisation rate(62.90%).In the degradation reaction for MNZ,low concentrations of MNZ(C0[MNZ]<30 mg/L)could be completely degraded within 5 min,and the degradation rate for high concentrations of MNZ(100 mg/L)could also reach 99.92%at 40 min,and the degradation rate constant kobswas~6.45 times higher than that of the FCQDs/PMS system.(3)Electron paramagnetic resonance(EPR)and quenching experiments show that the PMS/CO(Ⅱ)-FCQDs/FNS system was a pure radical-based(sulfate radicals(SO4·-)and hydroxyl radicals(·OH))oxidation process.Density functional theory calculation revealed that the generation of octahedral CO(Ⅱ)derived from VOs:(i)improved the charge transfer within the catalyst lattice,i.e.along the CO(Ⅱ)-O-Fe(II)bond;(ii)accelerated the redox cycle of metal ions;(iii)strengthened the surface adsorption of HSO5-,which in turn boosted the activation of PMS.

  • 【网络出版投稿人】 吉林大学
  • 【网络出版年期】2023年 01期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络