节点文献
金属-聚合物衍生的Fe-N-C氧还原电催化剂的制备及性能研究
Preparation and Performance Study of Metal-polymer Derived Fe-N-C Electrocatalysts for Oxygen Reduction Reaction
【作者】 李志强;
【导师】 李箐;
【作者基本信息】 华中科技大学 , 材料学, 2021, 硕士
【摘要】 质子交换膜燃料电池(PEMFC)是一种理想的能源转化技术,具有清洁无污染、能量密度和转化效率高等优点。开发低成本、高活性的非贵金属氧还原反应(Oxygen reduction reaction,ORR)催化剂来替代昂贵且资源有限的铂(Pt)基催化剂是实现PEMFC商业化的关键。在众多非贵金属ORR催化剂中,过渡金属-氮-碳催化剂(M-N-C)呈现出良好的发展前景。然而M-N-C催化剂在酸性条件下仍然存在活性不足和稳定性较差等问题,这主要与M-Nx/C位点的本征活性低、密度低和脱金属化,以及催化剂碳基体在高温条件下的氧化腐蚀有关。本文以金属-聚合物超分子结构设计配位策略为基础,再结合硅(Si)掺杂和引入丙烯酸(AA)到海藻酸钠(SA)中设计金属-聚合物双交联网络分别制备具有优异ORR性能的Si/Fe-N-C和AA/SA-Fe-N催化剂,通过一系列的物理和电化学表征对Fe-N-C催化剂ORR活性和稳定性增强的机理进行研究。主要研究内容与实验结果如下:(1)以海藻酸钠(Sodium alginate,SA)为前驱体,采用金属聚合物超分子设计配位-Si掺杂相结合的策略,制备出具有高密度和均匀分散Fe-Nx/C位点的Si/Fe-N-C催化剂。首先通过Fe3+与SA中含氧官能团之间的配位作用形成具有三维空间的“蛋-盒”结构,使Fe3+均匀的分散在前驱体中,在热解过程中含氧官能团与Fe3+之间的键合作用能够阻止Fe原子的团聚;然后利用硅酸四乙酯与SA之间的氢键作用在前驱体中引入Si,有利于ORR过程中O2的活化和H2O的解吸附,同时可以提升催化剂碳基体的石墨化程度。通过后续热解和酸洗获得具有高活性和稳定性的0.5-Si/Fe-N-C-800催化剂,在0.5 M H2SO4条件下半波电位(E1/2)达到0.817 V(vs.Reversible hydrogen electrode,RHE),比未进行Si掺杂的Fe-N-C-800催化剂高32 m V;在60°C、O2饱和的0.5 M H2SO4溶液中,经过5000圈的电位循环(0.6-1.0 V)以后,0.5-Si/Fe-N-C-800催化剂的E1/2只损失20 m V,Fe-N-C-800催化剂E1/2的损失达到40 m V。研究表明,Si/Fe-N-C催化剂优异的ORR活性主要来源于碳基体中均匀分散和高密度的Fe-Nx/C活性位点;稳定性的提升主要来自于Si掺杂提升了催化剂碳基体的石墨化程度。(2)以SA、丙烯酸(Acrylic acid,AA)为前驱体,采用金属-聚合物双交联网络的策略,制备具有均匀分散的Fe-Nx/C活性位点的多孔碳材料(AA/SA-Fe-N)作为高效的ORR催化剂。首先AA单体聚合形成聚丙烯酸(Polyacrylic acid,PAA)网络,SA链物理穿插到PAA网络中,SA链的运动受到PAA网络的限制;随后将三氯化铁加入到PAA/SA溶液中,Fe3+与PAA/SA中的三个-COOH鳌合,形成“蛋-盒”结构,将Fe3+锚定的同时,还能将SA链紧紧的“钉”在PAA交联网络上;SA链物理穿插在PAA网络中,进而使得Fe3+在双交联网络中分散的更加均匀,增大了金属离子之间的距离,有效地缓解了热解过程中的团聚,Fe-Nx/C活性位点的密度得到有效地提升。同时为了研究前驱体干燥过程中颗粒的团聚对于催化剂活性的影响,分别采用蒸发溶剂干燥和冷冻干燥的方式去处理前驱体,热解以后获得的催化剂分别为e-AA/SA-Fe-N和f-AA/SA-Fe-N。在0.5M H2SO4溶液中,e-AA/SA-Fe-N-1的E1/2达到0.796 V(vs.RHE),比未引入AA的Fe-N-C-800高出11 m V;冷冻干燥获得的催化剂f-AA/SA-Fe-N-1的E1/2达到0.83 V(vs.RHE),高于同类的Fe-N-C催化剂。研究表明,f-AA/SA-Fe-N材料的高活性源自于催化剂中均匀分散的Fe-Nx/C位点和丰富的孔道结构。
【Abstract】 Proton exchange membrane fuel cell(PEMFC)is an ideal energy conversion technology,which has the advantages of cleanliness,high energy density and high conversion efficiency.The development of low-cost,high-activity platinum group metal(PGM)-free oxygen reduction reaction catalysts to replace expensive and resource-limited platinum-based catalysts is the key to the commercialization of PEMFC.Among the PGM-free catalysts,metal-nitrogen-carbon catalysts(M-N-C)show good prospects for development.However,the M-N-C catalysts still suffer from insufficient activity and unsatisfactory stability under acidic conditions,which are mainly related to the low intrinsic activity,low density and demetallization of the M-Nx/C sites,as well as the oxidative corrosion of the catalyst carbon matrix under high temperature conditions.In this paper,the metal-polymer supramolecular structure design coordination strategy is used as the basis for the preparation of Si/Fe-N-C and AA/SA-Fe-N catalysts with high ORR performance by combining silicon doping and the introduction of acrylic acid(AA)to design metal-polymer double cross-linking network,respectively.The mechanism of the enhanced ORR activity and stability of Fe-N-C catalysts is investigated by a series of physical and electrochemical characterizations.The main research contents and experimental results are as follows:(1)The Si/Fe-N-C catalysts with high density and uniformly dispersed Fe-Nx/C sites are prepared using sodium alginate(SA)as the precursor,combined with metal-polymer supramolecular design coordination and Si doping strategy.Firstly,the coordination between Fe3+and the oxygen-containing functional group in SA forms an"egg-box"structure with three-dimensional space,which makes Fe3+uniformly dispersed in the precursor and prevents the agglomeration of Fe atoms during the pyrolysis process;then the hydrogen bonding between tetraethyl silicate and SA is used to introduce Si,which is conducive to the activation of O2 and the desorption of H2O in the catalytic process,and can enhance the graphitization of the carbon matrix of the catalyst.The 0.5-Si/Fe-NC-800 catalyst with high activity and stability is obtained by subsequent pyrolysis and acid washing,and the half-wave potential(E1/2)reached 0.817V(vs.Reversible hydrogen electrode,RHE)in 0.5 M H2SO4,which is 32 m V higher than the Fe-NC-800 catalyst without Si doping;the 0.5-Si/Fe-N-C-800 catalyst exhibited excellent stability,as evidenced by a loss of only 20 m V in E1/2 after 5000potential cycles from 0.6 to 1.0 V in O2-saturated 0.5 M H2SO4 solution at 60°C.The loss in E1/2 of Fe-N-C-800 catalyst reaches 40 m V.The excellent ORR activity of the Si/Fe-N-C catalyst is mainly due to the homogeneous dispersion and high density of Fe-Nx/C active sites in the carbon matrix;the stability enhancement is mainly due to the Si doping which enhances the graphitization of the carbon matrix of the catalyst.(2)The porous carbon materials(AA/SA-Fe-N)with uniformly dispersed Fe-Nx/C active sites are prepared as efficient ORR catalysts by using SA and AA as precursors in combination with a metal-polymer double cross-linking network strategy.Firstly,the AA monomer polymerizes to form a polyacrylic acid(PAA)network,SA chain is physically interspersed into the PAA network.Subsequently,Fe Cl3 is added to the PAA/SA solution,and Fe3+chelates with three carboxyl groups in PAA/SA to form an"egg-box"structure.SA chain is physically interspersed in the PAA network,which in turn makes Fe3+more uniformly dispersed in the double cross-linked network and increases the distance between metal ions,effectively alleviating agglomeration during the pyrolysis,and the density of Fe-Nx/C active sites is effectively enhanced.To study the effect of particle agglomeration on the catalyst activity during precursor drying,we use evaporative solvent drying and freeze-drying to treat the precursors,and the catalysts obtained after pyrolysis are e-AA/SA-Fe-N and f-AA/SA-Fe-N,respectively.In 0.5 M H2SO4,the E1/2 of e-AA/SA-Fe-N-1 is 0.796 V(vs.RHE),which is 11 m V higher than Fe-N-C-800 without AA;the E1/2 of f-AA/SA-Fe-N-1 reached 0.83 V(vs.RHE).It is shown that the high activity of the f-AA/SA-Fe-N originated from the uniformly dispersed Fe-Nx/C sites and the extensive pore structure in the catalyst.