节点文献

高速重载静压推力轴承腔型效应研究

Research on Cavity Effect of High Speed and Heavy Load Hydrostatic Thrust Bearing

【作者】 王宇

【导师】 于晓东; 王俊峰;

【作者基本信息】 哈尔滨理工大学 , 机械工程(专业学位), 2021, 硕士

【摘要】 液体静压推力轴承是大型立式数控车床的关键组成部分,它的性能直接影响立式数控车床的加工效率、加工精度以及稳定性。为提升加工产品质量,液体静压推力轴承的优化显得尤为重要。液体静压推力轴承在实际应用过程中,油腔形状各异,不同腔型的油腔深度、进油孔尺寸等关键参数还未进行优化,缺乏在同一工况条件下对各个腔型进行对比分析。因此,本文在负载24t和转速104rpm的极端工况下探究双矩形腔、圆环形腔、圆形腔、跑道形腔的最佳腔深和最佳进油孔尺寸对液体静压推力轴承的影响。本文对双矩形腔、圆环形腔、圆形腔和跑道形腔的油腔深度和进油孔尺寸进行探究。在探究过程中,采用理论分析,模拟仿真和实验验证的方法进行研究。首先对液体静压推力轴承国内外发展现状进行总结,尤其是对液体静压推力轴承的腔型研究进行归纳分析。其次根据腔型特点,对不同油腔的流量方程和承载力方程进行推导,得到油膜厚度-转速的相关方程和油膜厚度-载荷的相关方程,为模拟仿真各个不同腔型油膜的可靠性提供理论基础。然后利用Solidworks软件根据理论计算结果建立不同腔型的油膜模型,通过ANSYS中CFD模块对不同油膜模型进行结构化网格划分并定义相关Part,方便后续的求解计算。利用ANSYS中CFX模块对已定义好的Part设置模拟仿真条件并对整个油膜模型求解,获得不同腔深、不同进油孔尺寸的压力场云图和温度场云图。根据压力场云图和温度场云图得到不同腔型最佳腔深和最佳进油孔尺寸,并对各个最佳腔型进行对比分析,为工程实际选取腔型和优化腔型提供参考。利用新型Q1-224静压推力轴承实验台在负载24t和转速104rpm的极端工况下对双矩形腔最佳腔型进行实验,采集双矩形腔最佳腔型温度和压力的实验数据并进行分析总结,验证不同腔型油膜理论模型和不同腔型模拟仿真方法的正确性。

【Abstract】 The hydrostatic thrust bearing is a key component of a large vertical CNC lathe,and its performance directly affects the processing efficiency,machining accuracy and stability of the vertical CNC lathe.In order to improve the quality of processed products,the optimization of hydrostatic thrust bearings has beco me particularly important.In the actual application of hydrostatic thrust bearings,the shape of the oil cavity is different,and the key parameters such as the depth of the oil cavity and the size of the oil inlet hole of different cavity types have not been optimized.There is a lack of comparison of various cavities under the same working conditions.Therefore,this article explores the effect of the optimal cavity depth and the optimal oil hole size of the double rectangular cavity,toroidal cavity,circular cavity,and racetrack-shaped cavity on the hydrostatic thrust bearing under the extreme working conditions of 24 t load and 104 rpm speed.This article explores the oil cavity depth and oil inlet size of the double rectangular cavity,circular ring cavity,circular cavity and racetrack-shaped cavity.In the process of exploration,the methods of theoretical analysis,simulation and experimental verification are used for research.Firstly,the development status of hydrostatic thrust bearings at home and abroad is summarized,and the cavity type research of hydrostatic thrust bearings is summarized and analyzed.Secondly,according to the characteristics of different cavity types,the flow equation and bearing capacity equation of different cavity types are derived.The related equations of oil film thickness-speed and the related equations of oil film thickness-load are derived.These theoretical equations provide a theoretical basis for simulating the reliability of different cavity types.And then,the Solidworks software is used to establish oil film models of different cavity types according to the theoretical calculation results.When the modeling is completed,this paper uses the ICEM CFD module in ANSYS to perform structured meshing of different oil film models.By defining related Part,it is convenient for the subsequent solution calculation.When setting the boundary conditions,this paper uses the CFX module in ANSYS to operate to obtain the pressure field cloud diagram and temperature field cloud diagram of different cavity depths and different oil inlet hole sizes.According to the pressure field cloud map and the temperature cloud map,this paper proposes the best cavity depth and the best oil inlet hole size for the high load-bearing low temperature rise of each cavity type oil film.The best cavity types are compared,and the comparison results provide references for the actual selection and optimization of cavity types in engineering.In this paper,the new Q1-224 hydrostatic thrust bearing test bench is used to conduct experiments on the optimal cavity type of the double rectangular cavity under the extreme working conditions of 24 t load and 104 rpm speed.The collected experiments on the temperature field and pressure field of the optimal cavity of the double rectangular cavity are summarized.This method verifies the correctness of different cavity type oil film theoretical models and different cavity type simulation methods.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络