节点文献
“海鸥号”水下滑翔机设计及其水动力性能研究
Research on Design and Hydrodynamic Performance of "Seagull" Underwater Glider
【作者】 杨磊;
【作者基本信息】 上海交通大学 , 船舶与海洋工程, 2017, 硕士
【摘要】 水下滑翔机是一种不依靠外部推进装置的水下自主航行器,通过改变自身净浮力和重心位置实现锯齿运动及螺旋运动,是一种新兴的海洋观测技术平台,具有续航久、能耗低、航程远、成本低以及易操作的特点。当前,水下滑翔机在监测海洋环境、研究海洋物种、油气工业工程等领域均有广泛应用。因此,水下滑翔机的研究对我国海洋事业发展意义重大。本文依托项目基础研制出一台最大深度500米,可在垂直方向监测的水下滑翔机样机,并针对“海鸥号”水下滑翔机的系统设计和水动力计算两大方面进行详细阐述,其主要研究工作如下:本文中水下滑翔机由浮力调节系统、姿态调节系统、控制系统、通讯定位系统以及载体结构组成。其中,浮力调节系统实现了对排水体积的精确测量;姿态调节系统能够调节俯仰角和横滚角;自主研发的控制系统可实现对浮力和姿态系统的控制以及传感器数据采集和存储;载体结构能够满足各子系统布置需求,且结构强度符合工作需求。水下滑翔机的水动力是由惯性类水动力和粘性类水动力构成。针对惯性类水动力,本文一方面采用了基于势流的面元法,另一方面采用了基于CFD软件模拟滑翔机的平面运动机构试验方法,通过详细阐述两种方法原理及过程,对比所求得“海鸥号”滑翔机结果,进而分析两者的优劣势。针对于粘性类水动力,本文采用了基于CFD软件模拟滑翔机直航和斜航运动的方法,同时介绍了拖曳水池试验的原理、试验装置及过程,并将CFD结果与拖曳试验结果对比,从而验证了CFD方法的精确度满足工程要求。此外,基于上述所求水动力结果,对滑翔机垂面运动状态和外场湖试结果进行分析,进一步验证水动力的准确性。
【Abstract】 Underwater gliders are a type of autonomous underwater vehicles which don’t use external active propulsion systems.By changing its net buoyancy and the center of gravity position,it can glide in sawtooth motion and spiraling motion.As a novel underwater observing platform,underwater gliders are characterized with long endurance,low energy consumption,long range,low cost and easy operation.Nowadays,underwater gliders have been widely used in ocean environment monitoring,marine biology research,oil & gas industry engineering and so on.Therefore,developing underwater gliders is of great significance to the development of China’s marine industry.In this study,a 500-meter-depth prototype underwater glider has been developed with the help of project support.It is capable of monitoring in vertical direction.Besides,this paper describes the system design and hydrodynamic calculation methods of “Seagull” glider in detail.The main research work is outlined as follows:The underwater glider includes buoyancy adjusting mechanism,attitude adjusting mechanism,control system,communication & position system and general structure.Moreover,the buoyancy adjusting mechanism is able to measure the volume of displacement accurately.The attitude adjusting mechanism can adjust both pitch angle and roll angle.Domestically developed Control system can control buoyancy adjusting mechanism,attitude adjusting mechanism and sensors,collect and store data.The general structure can meet the requirement of subsystems’ layout and its structural strength is satisfied with operational requirement.The hydrodynamics force of an underwater glider include inertia hydrodynamic force and viscous hydrodynamic force.Both potential Hess-Smith method and CFD method which simulates Planar Motion Mechanism test are applied to obtain the inertia hydrodynamic force of “Seagull” glider.By describing principles and procedures of two methods and comparing the results,the advantage and disadvantages of two methods can be concluded.CFD method is applied to simulate the direct and oblique flights of “Seagull” glider in order to obtain the viscous hydrodynamic force.Furthermore,this paper describes the principles,equipment and procedures of model towing test.It verifies that the accuracy of CFD method is satisfied with the engineering requirement.In addition,the vertical motion and field experiments of “Seagull” glider are analyzed,which further verifiy the accuracy of hydrodynamic results.
【Key words】 underwater glider; hydrodynamics; Hess-Smith; Planar Motion Mechanism; Computational Fluid Dynamic; model towing test;