节点文献

未知定常海流下UUV对动目标轨迹跟踪控制研究

Research on Trajectory Tracking Control of UUV to Moving Target under Unknown Steady Current

【作者】 李响

【导师】 严浙平;

【作者基本信息】 哈尔滨工程大学 , 控制科学与工程, 2019, 硕士

【摘要】 水下无人航行器(Unmanned Underwater Vehicle,UUV)运动目标轨迹跟踪控制技术,是完成动态对接回收、敌对情报搜集、时敏打击等诸多水下作业任务的关键技术,无论在工程应用还是理论研究方面都具有很高的科研价值。考虑UUV在执行运动目标跟踪任务时受未知定常海流扰动和模型参数摄动的影响,采用对内外扰动不敏感的滑模控制方法结合反步设计思想,设计运动目标轨迹跟踪控制器,以实现UUV在未知定常海流扰动下的运动目标轨迹跟踪。本论文针对未知定常海流下UUV运动目标轨迹跟踪控制开展研究如下:首先,讨论UUV和机动目标的建模问题。分析描述UUV运动的固定坐标系和随体坐标系间的转换关系,并结合UUV的运动特性以及在流体中的受力情况,建立UUV的六自由度空间运动学方程和动力学方程。分析海洋运动体的机动性,建立运动目标的几种典型运动模型。其次,研究卡尔曼滤波理论下的目标状态估计方法。介绍卡尔曼滤波方法的基本原理,分析其局限性进一步介绍扩展卡尔曼滤波方法和无迹卡尔曼滤波方法,设计对比仿真实验,并分析对比仿真试验结果,考虑到基于单一模型滤波方法的局限性,采用基于无迹卡尔曼的交互多模型滤波方法完成对运动目标估计,设计仿真实验并分析实验结果,验证该方法的有效性。再次,针对平面区域内的运动目标设计平面轨迹跟踪控制器。采用与被控对象同结构的虚拟UUV设计平面轨迹跟踪导引律,进而建立UUV动目标平面轨迹跟踪误差方程。采用滑模控制结合反步设计思想,设计运动目标平面轨迹跟踪控制器,根据Lyapunov稳定性理论及相关定理,分析闭环控制系统稳定性,设计仿真验证试验并分析实验结果,验证控制器的可行性和有效性。最后,针对空间区域内的运动目标设计空间轨迹跟踪控制器。将平面轨迹跟踪导引方法拓展到三维空间,在反步法设计思路下,采用积分滑模控制方法,设计一种双闭环结构的空间动目标轨迹跟踪控制器,根据Lyapunov理论及相关定理,分析闭环控制系统稳定性,考虑到存在未知定常海流扰动和UUV模型参数摄动问题,设计仿真验证试验并分析实验结果,验证控制器的有效性和鲁棒性。

【Abstract】 Unmanned Underwater Vehicle trajectory tracking control technology(UUV)is the key technology to complete many underwater tasks such as dynamic docking recovery,hostile intelligence collection and time-sensitive strike,which has high scientific research value in both engineering application and theoretical research.Considering that UUV is affected by unknown steady current disturbance and model parameter perturbation when performing the moving target tracking task,a moving target trajectory tracking controller is designed based on sliding mode control insensitive to internal and external disturbances and the backstepping design idea to realize UUV moving target trajectory tracking under unknown steady current disturbance.In this paper,the trajectory tracking control of UUV moving target under unknown steady current is studied as follows:First,the modeling of UUV and maneuvering targets is discussed.The transformation relationship between the fixed coordinate system and the satellite coordinate system describing the motion of UUV is analyzed,and the six-degree-of-freedom spatial kinematics equation and dynamics equation of UUV are established in combination with the motion characteristics of UUV and the stress in fluid.This paper analyzes the mobility of ocean moving bodies and establishes several typical moving models of moving targets.Secondly,the target state estimation method based on Kalman filter theory is studied.This paper introduces the basic principle of Kalman filtering method,analyzes its limitations,further introduces the extended Kalman filtering method and unscented Kalman filtering method,designs a comparative simulation experiment,and analyzes the results of the comparative simulation experiment.Considering the limitations of the single model-based filtering method,an unscented Kalman-based interactive multi-model filtering method is used to complete the estimation of moving targets,and the simulation experiment is designed and the experimental results are analyzed to verify the effectiveness of the method.Thirdly,a planar trajectory tracking controller is designed for moving objects in the planar region.A virtual UUV with the same structure as the controlled object is used to design a plane trajectory tracking guidance law,and then the trajectory tracking plane error equation of UUV moving target is established.Using sliding mode control combined with backstepping design idea,a planar moving target trajectory tracking controller is designed.According to Lyapunov stability theory and related theorems,the stability of the closed-loop control system is analyzed.Simulation verification tests are designed and experimental results are analyzed to verify the feasibility and effectiveness of the controller.Finally,a space trajectory tracking controller is designed for moving objects in the space region.The planar trajectory tracking guidance method is extended to three-dimensional space.Under the idea of backstepping design,an integral sliding mode control method is used to design space moving target trajectory tracking controller with double closed-loop structure.According to Lyapunov theory and related theorems,the stability of the closed-loop control system is analyzed.Considering the existence of unknown steady current disturbance and UUV model parameter perturbation,simulation verification tests are designed and the experimental results are analyzed to verify the effectiveness and robustness of the controller.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络