节点文献

图像文字定位与提取技术研究

Research of Image Text Positioning and Extraction Technology

【作者】 秦伟

【导师】 吴良杰;

【作者基本信息】 哈尔滨工程大学 , 计算机科学与技术, 2015, 硕士

【摘要】 伴随着信息技术以及网络技术的快速发展,多媒体已经成为信息承载与共享的重要途径,数字图像文字识别技术作为当前图像信息检索与分析的重要环节,在机器人视觉、车牌识别、网络过滤、票据自动实时处理等领域中得到了广泛应用,是当前计算机图像处理技术中的重要发展领域。本文通过对传统的图像文字识别相关技术与理论进行整理与分析,对现有的图像文字的定位与提取技术的优缺点进行比较研究,针对其中存在的问题进行改进,包括定位效果不佳、处理过程效率较低等,并对改进后的算法进行软件流程设计,在Matlab 5.0环境下对改进后的新算法进行验证与分析。首先,本文在理论研究方面主要分析了颜色空间模型理论、数字图像处理相关技术以及图像文字识别的基本流程与技术难点;其次,在理论分析的基础上对现有的图像文字定位技术进行整理研究,分析各算法的优缺点,并在此基础上提出了改进后的图像文本定位算法,改进后的算法的主要处理步骤包括图像边缘检测、二值化处理、形态处理与噪声剔除等流程;第三,在对现有图像文字定位处理技术进行研究的基础上提出了一种新的图像文字提取与识别算法,新算法的主要处理流程包括文本倾斜校正、字符切分、归一化处理以及文本特征提取与识别等步骤。最后,在Matlab5.0环境下对改进后的文本区域定位算法和文字提取算法进行了上机仿真,根据算法的仿真分析结果可以得到本文提出的新算法基本能够应对常规应用环境下的数字图像文本识别需求。

【Abstract】 With the rapid development of information technology and network technology,multimedia has become an important way in information bearing and sharing.Digital image character recognition technology is one of the most important content in image information retrieval and analysis currently,and has been widely applied in the field of robot vision,license plate recognition,network filtering,automatic real-time processing of bills,etc.In this thesis,the image text positioning technology and extraction technology is analysis and researched on the base of collation and analysis of relevant technical and theoretical in image character recognition,and the corresponding image positioning and text extraction algorithm is also designed and checked under Matlab 5.0 in this thesis.Firstly,this thesis analyzes the color space model theory,digital image processing technologies and the basic processes,and the technical difficulty of image character recognition.Secondly,on the basis of theoretical analysis,this thesis designed the image text localization algorithms,including edge detection,linearization processing,morphological processing and noise removing,etc.Thirdly,on the basis of the positioning of text in the image,this thesis designed images and text extraction and recognition algorithms,including text tilt correction,character segmentation,normalization,and text feature extraction and recognition.Finally,the algorithms designed in this thesis are realized under the Matlab5.0 environment.And from the analysis of the test results of the algorithms designed in this thesis,they are able to respond to the needs of conventional digital image text recognition application environment.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络