节点文献

直线电机式馈能型半主动悬架变压充电控制设计

Control Design of Semi-active Suspension Reclaiming Energy with Linear Motor Based on Variable Battery Charging Voltage

【作者】 王健

【导师】 陈士安;

【作者基本信息】 江苏大学 , 车辆工程, 2017, 硕士

【摘要】 全球不可再生能源的不断减少及人们环保意识的不断增强,汽车节能技术成为了汽车设计开发过程中必不可少的重要技术。电磁馈能型半主动悬架不仅能够改善车辆的行驶平顺性,还能回收部分悬架振动能量,具有一定的研究价值。本文基于变压充电控制方法进行直线电机式馈能型半主动悬架控制设计,并设计两种充电电压求取方法,提高直线电机式电磁馈能型半主动悬架控制精度和工作效果。本文所做的主要研究工作如下:(1)建立了半车四自由度电磁馈能型半主动悬架及基于变压充电控制方法的直线电机式半主动执行器的数学模型,解析不同充电电压与速度下半主动执行器的力学特性,给出了悬架使用性能及馈能性能评价方法,并基于LQG控制策略设计理想半主动控制力求取方法。(2)设计了基于数值拟合的直线电机式半主动执行器的充电电压求取方法,基于数值仿真获得半主动执行器的力学特性,利用最小二乘法拟合得到充电电压关于悬架相对运动速度与馈能阻尼力的准线性关系函数,联立相应的数学关系,来根据实时悬架相对运动速度和理想半主动控制力求取实时充电电压。(3)设计了基于电机等效模型的直线电机式半主动执行器的充电电压求取方法,将三相电机及整流桥等效成单相电机,并根据实际直线电机工作特性进行模型拟合确定该单相电机等效模型反电势系数、电磁推力系数、等效电阻及等效电感,获取单相电机等效模型,以得到充电电压的求取公式。(4)使用Matlab/simulink软件建立被动悬架仿真模型、基于数值拟合变压充电控制的悬架仿真模型、基于电机等效模型变压充电控制的悬架仿真模型及理想半主动悬架仿真模型,并进行多种悬架使用性能与馈能效果对比与分析,验证基于电机等效模型充电电压求取方法的先进性。结果显示:(1)与被动悬架相比,基于数值拟合的充电电压求取方法悬架综合性能指标值减小28.4%,前、后悬架实际半主动控制力相对于理想半主动控制力的相关系数分别为0.9692和0.9746,前、后馈能半主动执行器流向蓄电池组的能量占悬架振动能量的55.6%和61.5%。(2)与被动悬架相比,基于电机等效模型的充电电压求取方法悬架综合性能指标值减小30.0%,前、后悬架实际半主动控制力相对于理想半主动控制力的相关系数分别为0.9788和0.9836,前、后馈能半主动执行器流向蓄电池组的能量占悬架振动能量的57.8%和56.7%。说明采用上述变压充电控制和与之相适应的基于数值拟合及电机等效模型的充电电压求取方法不仅能获得较好的悬架综合性能,而且能回收大部分悬架间振动能量。

【Abstract】 With the global non-renewable energy decreasing and environment protection awareness increasing,energy saving technology has become an important technology in the automotive design process.The electromagnetic semi-active suspension reclaiming energy(ESASRE)can not only increase vehicle riding comfort but also recover suspension vibration energy.Therefore,it has certain research value.This paper presents variable battery charging voltage control method with linear motor and studies two charging voltage calculation methods in order to improve work effect of ESASRE.The main research work of this paper is as follows:The mathematical model of half-car ESASRE and the semi-active actuator with linear motor based on variable battery charging voltage are established.Mechanical properties of the semi-active actuator are studied under different charging voltage and speed.The evaluation indexes of the suspension using and reclaim energy performance are established.The controller for ideal semi-active control forces is designed based on LQG strategy.The charging voltage calculation method based on numerical fitting is designed.Mechanical properties of the semi-active actuator are obtained by numerical simulation.The quasi linear relation functions of charge voltage about suspension relative speed and damping force are obtained based on least square method.Relevant functions are united and the charging voltage can be obtained according to suspension relative speed and ideal semi-active control force needed correspondingly.The charging voltage calculation method based on motor equivalent model is designed.This method equivalent the three-phase linear motor with bridge rectifier to a single-phase motor model.Back EMF coefficient,electromagnetic thrust coefficient,resistance and inductance of the single-phase motor equivalent model are obtained through numerical fitting.The calculation formula of charging voltage can be obtained correspondingly.The simulation models of the passive suspension,the ESASRE based on numerical fitting,the ESASRE based on motor equivalent and the ideal semi-active one areestablished by Matlab/simulink software.Performance comparisons and analyses among the suspensions are conducted,verifying the advanced nature of variable voltage charging control method.Results show that suspension quadratic performance indexes of the ESASRE based on numerical fitting reduce by 28.4% compared with the passive suspension.The correlation coefficients of the ESASRE based on numerical fitting between the front and rear suspensions and real control forces are 0.9692 and 0.9746.55.6% and 61.5% of vibration energy of the front and rear suspensions of the ESASRE based on numerical fitting are reclaimed to flow to batteries.Suspension quadratic performance indexes of the ESASRE based on motor equivalent model reduce by 30.0% compared with the passive suspension.The correlation coefficients of the ESASRE based on motor equivalent model between the front and rear suspensions and real control forces are0.9788 and 0.9836.57.8% and 56.7% of vibration energy of the front and rear suspensions of the ESASRE based on motor equivalent model are reclaimed to flow to batteries.So,the newly two developed methods can not only achieve better suspension comprehensive performance,but also reclaim most of suspension vibration energy.

  • 【网络出版投稿人】 江苏大学
  • 【网络出版年期】2018年 01期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络