节点文献

基于中高压喷水推进技术的两栖车辆推进与回转特性研究

Research on The Propulsive And Rotational Characteristics of Amphibious Vehicle Based on Middle High Pressure Waterjet Propulsion Technology

【作者】 刘俊

【导师】 余祖耀;

【作者基本信息】 华中科技大学 , 轮机工程, 2016, 硕士

【摘要】 优良的操纵性能是两栖车辆在水面航行时具备作战条件的重要保障,采用容积式泵的中高压射流喷水推进是一种全新概念的推进方式,它具有推重比高、噪声低、传动结构简单等优点,本课题旨在将中高压射流喷水推进技术应用于两栖车辆上,采用一种矢量喷嘴转向机构实现两栖车辆的矢量推进,对两栖战车的航行机动性进行研究分析,从而探究这种新型喷水推进方式对两栖车辆的矢量控制效果。本文主要从以下几个方面进行研究:首先对中高压喷水推进技术进行理论研究,分析喷水推进系统各组成部分的结构及性能参数对喷水推进效率的影响,并利用动量定理的基本原理研究理想推进器和实际推进器的喷射推力计算方法。然后比较几种典型转向装置的优缺点,从中选择最适合的实现矢量推进的转向方案,再结合两栖车辆的结构特点选定两栖车辆喷水推进装置的整体模型,并对两栖车辆模型的初始匹配进行计算。采用数值计算方法对比分析不同喷嘴收缩角和不同喷嘴长径比条件下喷水推进装置的射流反推力大小,以及不同喷嘴淹没深度、不同喷嘴间距和不同进水口布局条件下两栖车辆的航行阻力大小。通过仿真得到最优结果,从而进一步确定两栖车辆模型的喷嘴结构参数以及喷嘴和进水口的分布,同时为两栖车辆回转过程中的流体动力系数的求解提供参考。最后以常规舰船操纵运动的数学方程(MMG模型)为基础,建立喷水推进两栖车辆模型的回转运动操纵方程,并分析两栖车辆的附连水质量、附连惯性矩以及粘性类流体动力系数的求解方法。综合对喷水推进装置的水动力计算,建立两栖车辆回转运动的数学模型并利用Matlab/Simulink对两栖车辆水上航行的回转轨迹进行仿真研究。

【Abstract】 Excellent maneuvering performance is an important guarantee for the combat capability of the amphibious vehicle sailing on the water. The mid/high pressure waterjet propulsion which adopts the positive displacement pump is a new concept of propulsion. It has the advantages of low noise, high thrust weight ratio and simple structure et al. The aim of this project is to apply the mid/high pressure waterjet propulsion technology to the amphibious vehicle, and then accomplish the vector propulsion of the amphibious vehicle by using the vector nozzle steering mechanism. So as to explore the effect of this new propulsive method to the vector control of the amphibious vehicle through the research and analysis of the maneuverability of it. This paper studies the following aspects:Firstly, the theory of the mid/high pressure waterjet propulsion technology is studied. The influence of structure and performance parameters of water jet propulsion system on the water jet propulsion efficiency is analyzed. Research on the calculation method of the thrust of ideal propeller and actual thruster by using the basic principle of momentum theorem is carried out.Then compare the advantages and disadvantages of several typical steering device, and select the most suitable one to achieve vector propulsion. Afterwards, the whole model of the water jet propulsion device of the amphibious vehicle is selected combined with the structure characteristics of the amphibious vehicle. And the initial matching of the amphibious vehicle model is calculated.Numerical calculation method is adopt to compare and analysis the thrust of the water jet propulsion device with different nozzle contraction angle and different nozzle length diameter ratio, and the sailing resistance of the amphibious vehicle with different nozzle spacing, different nozzle submerged depth and different inlet layout conditions. The optimal results are obtained by simulation, then we can further determine the nozzle structure parameters of the amphibious vehicle model and the distribution of the nozzle and the inlet. At the same time, it will also provide the reference for solving the hydrodynamic coefficient of the amphibious vehicle during the rotation process.Finally, the motion control equation of the amphibious vehicle model is established based on the mathematical equation(MMG model) of the conventional ship maneuvering motion. And the solution of the attached water mass, the inertia moment of the amphibious vehicle and the hydrodynamic coefficient of the viscous fluid is analyzed. Combined with the hydrodynamic calculation of the water jet propulsion system, the mathematical model of the rotational motion of amphibious vehicle is established, and the rotation trajectory of the amphibious vehicle is simulated by Matlab/Simulink at the end of this paper.

  • 【分类号】U664.34;U469.693
  • 【被引频次】5
  • 【下载频次】334
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络