节点文献

算法思想渗透到高中数学教学的研究

The Research of Algorithm Thought to High School Mathematics Teaching

【作者】 张超

【导师】 程国忠; 蒲燕;

【作者基本信息】 西华师范大学 , 教育硕士(专业学位), 2016, 硕士

【摘要】 本文着重是对算法思想如何在高中数学教学中渗透的研究,并以此提出相应教学案例。从对高中数学算法教学的认识和影响高中算法教学的原因入手,提出高中数学算法思想渗透应结合算法语言的学习和高中数学建模。在以上研究的基础上,针对普通高中课程标准实验教科书(数学必修)三角函数、数列、概率统计和几何证明等内容提出了算法思想渗透的具体方法和教学案例。第一章为绪论,主要阐述算法思想渗透到高中数学教学的背景及意义。第二章是理论分析,笔者认为建构主义的学习理论和教学理论表明高中数学教学中渗透算法思想对算法的学习具有深远意义。第三章是对算法思想的认识,分析了算法思想、算法语言及其与数学建模的关系。第四章为算法思想渗透到高中数学具体章节中的研究,该章也是本文的重点和难点,不仅阐明了如何将算法思想渗透在高中数学的具体章节中,而且在统计概率和几何证明中提出了具体教学案例。最后分析了本文存在的不足与创新,也希望有更多学者在算法思想的渗透研究中做出宝贵贡献。

【Abstract】 Based on algorithmic thinking in high school mathematics,this paper provides relevant specific teaching cases. Starting from the understanding of high school algorithmic teaching and the factors affecting it, this paper suggests that the permeation of high school algorithmic thinking should combine the learning of algorithmic language and mathematical modeling together. It proposes the specific methods and teaching cases of algorithmic thinking permeation on trigonometric function, sequence,probability statistics and geometric proof on the basis of the study mentioned above.This paper is divided into four chapters. As the exordium,chapter 1 mainly explains the background and significance of algorithmic thinking permeating into mathematic teaching in high school. Chapter 2 introduces the theoretical analysis——Learning theory and teaching theory of constructivism indicate the algorithmic thinking has profound significance on algorithmic learning. Chapter 3 is focused on the understanding of algorithmic thinking, which analyzes the connection in algorithmic thinking, algorithmic language and mathematical modeling. Chapter 4 is the study on the permeation of algorithmic thinking into the specific sections in high school mathematics teaching, which is also the emphasis of the paper. It doesn’t only explain how to permeate algorithmic thinking into specific sections in high school mathematical teaching,but also put forward specific teaching cases on the basis of probability statistics and geometric proof.Finally, we analyze the imperfections and innovations of this paper and hope there will be more academicians making valuable contributions on the permeation of algorithmic thinking.

  • 【分类号】G633.6
  • 【被引频次】1
  • 【下载频次】139
节点文献中: 

本文链接的文献网络图示:

本文的引文网络