节点文献
半自动铝丝焊机的芯片识别与定位方法研究
Research on Chip Identification And Location Method of Semi Automatic Aluminum Wire Welding Machine
【作者】 张贺;
【作者基本信息】 吉林大学 , 控制工程(专业学位), 2015, 硕士
【摘要】 铝丝焊机是综合了自动化控制、图像处理、超声波焊接等技术的专用微电子封装设备,铝丝焊机主要半导体芯片焊区与框架管脚间引线的焊接。本文以改造手动铝丝焊机成为半自动铝丝焊机为研究内容,本论文对半自动铝丝焊机控制系统的组成进行分析,并分别对其主要部分:芯片图像处理算法和运动定位算法进行了分析,全文结构如下:首先设计了半自动铝丝焊机的控制系统结构。在确定了半自动铝丝焊机控制系统的组成的基础上,对控制系统的硬件型号进行了选择。同时根据半自动铝丝焊机图像识别系统和运动系统的工作原理,针对图像识别系统模版阶段和匹配阶段的工作流程进行了研究。其次,针对半自动铝丝焊机的运动控制系统、图像识别系统的基本原理进行了分析。针对半自动铝丝焊机目前存在的主要技术问题,本文选取基于特征点的模版匹配方法作为半自动铝丝焊机图像识别系统的模式识别算法,该算法可以将芯片的精确位置传递到运动控制系统,从而确保了键合所需的定位精度。半自动铝丝焊机的运动定位系统选用步进电机作为运动系统的驱动装置,采用模糊PID控制算法,实现了运动系统的闭环控制要求。为了使运动系统的响应速度快、超调量小,必须根据设备具体情况对模糊数字PID参数进行调整,得到最优的参数值。本文以MATLAB仿真软件为基础检验模糊PID参数优化后的效果。实验结果表明模糊PID控制算法在系统响应速度、抑制干扰性能方面都比PID控制算法要优秀。最后,独立研发了半自动铝丝焊机应用程序,并为用户提供了一个便于操作、方便实用的操作界面,包括模版设置功能、图像设置功能、焊接设置、系统控制参数的设置等功能。其中图像设置功能在实际生产过程中针对不同芯片情况选择不同的图像预处理和匹配算法,有效的提高了实际生产过程中的匹配精度。
【Abstract】 Aluminum wire welding is a set of precision machinery, automatic control, image recognition, optical, ultrasonic welding technology in one of the modern high-tech microelectronic packaging equipment, mainly used for integrated circuit manufacturing process in the chip pad and the outer frame lead between the welding.This paper to manually transform aluminum wire welding become semi auto aluminum wire welding as the research content, the semi automatic aluminium wire welding machine control system were analyzed, and its main parts: image recognition system and motion positioning algorithm were studied, and results of this dissertation are as follows:First, the structure of the control system of the automatic aluminum wire welding machine is introduced. Based on the analysis of the composition of the control system of the semi- Automatic aluminium wire welding machine, the hardware of the image recognition system and the motion system is selected. According to the working principle of the image recognition system and the motion system of the semi auto aluminum wire welding machine, the paper introduces the process of the image recognition system template stage and the matching stage.Secondly, the sub module of the control system of the automatic aluminum wire welding machine is studied. The basic principle of the motion control and image recognition system is studied. Aiming at the main technical problems existing in the semi automatic aluminum wire welding, this paper selects template based feature point matching method as a pattern recognition algorithm of semi automatic aluminum wire welding image recognition system, the chip and the lead frame position deviation is transmitted to the control system, so as to realize the accurate positioning, to ensure the bonding precision. The motion positioning system of the semi- Automatic aluminum wire welding machine is used as the driving device of the motor system. The fuzzy PID control algorithm is adopted to realize the closed-loop control of the motor system. In order to make the response speed of the motion system and the overshoot of the system, we must adjust the parameters of the fuzzy number PID according to the specific conditions of the equipment. In this paper, the simulation experiment is carried out to verify the effect of fuzzy PID parameters optimization by MATLAB. Experimental results show that the performance of the fuzzy PID control algorithm is better than the PID control algorithm in terms of system response, anti disturbance and friction.Finally, the independent development of the semi automatic aluminum wire welding application, the program to the user provides a strong practicability, simple operation interface, including template setting function, image setting function, welding, control system parameter settings and other functions. In the actual production process, the image set function can choose different image preprocessing and matching algorithm, which can effectively improve the matching accuracy in the actual production process.
【Key words】 Semi automatic aluminium wire welding machine; Image Recognition; Motion Control; Fuzzy PID;
- 【网络出版投稿人】 吉林大学 【网络出版年期】2016年 06期
- 【分类号】TG43
- 【下载频次】85