节点文献

埃洛石纳米管负载金属氧化物及其催化性能的研究

【作者】 孙伟

【导师】 程志林;

【作者基本信息】 扬州大学 , 材料工程(专业学位), 2015, 硕士

【摘要】 埃洛石纳米管(HNTs)是一种天然铝硅酸盐的中空管状纳米管,价格低廉,具有一定的长径比、天然纳米空间及内腔负载容积大等特点,适合作为纳米反应器,同时其比较大的外表面积和硅铝骨架结构,适合作为催化剂载体。本文以HNTs结构特征为研究对象,采用滴加灌装法在HNTs管腔内分别负载纳米氧化铜和氮掺杂纳米氧化锌颗粒,制得纳米氧化铜负载型催化剂(CuO/HNTs)和氮掺杂纳米氧化锌负载型催化剂(N-doped-ZnO/HNTs);采用反应釜气相沉积法在HNTs表面负载纳米二氧化钛颗粒,制备HNTs负载型纳米催化剂,分别研究了它们的催化性能。采用XRD、FI-IR、TGA、SEM、TEM、BET等表征手段研究了HNTs的结构和物理性质,结果表明本课题采用的国产HNTs的长度约为200-500 nm,外径约为50-70 nm,内径约为15-25 nm,比表面积为33.8 m2/g。经800℃煅烧3h后,HNTs的管状结构依然能保持完好,表明HNTs具有很好的热稳定性。在100℃下,经pH=1或13的溶液水热浸泡处理后,HNTs的管状结构依然完好,说明HNTs具有良好的耐酸碱性。以HNTs的中空管状结构为模板,采用滴加灌装法分别制得纳米氧化铜负载型催化剂(CuO/HNTs)和氮掺杂纳米氧化锌负载型催化剂(N-doped-ZnO/HNTs)。运用XRD、FT-IR、 Uv-vis、SEM、TEM、EDX等表征手段对CuO/HNTs、N-doped-ZnO/HNTs进行了分析表征,结果表明,纳米氧化铜、纳米氧化锌颗粒成功负载到了HNTs管腔内,且ZnO中氮元素的原子摩尔百分含量为1.2%。研究了CuO/HNTs在环己烯环氧化为2-环己烯酮反应中的催化性能,结果表明,CuO/HNTs的转化率大于99%,选择性可达98%。研究了N-doped-ZnO/HNTs在模拟太阳光下,光催化降解甲基橙的光催化性能,结果表明,在光照120 min后,N-doped-ZnO/HNTs对甲基橙的去除率为70%。以HNTs表面为模板,采用反应釜气相沉积法负载氮掺杂纳米二氧化钛。运用XRD、 FI-IR、Uv-vis、SEM、TEM、EDX等表征手段对N-doped-TiO2/HNTs表征分析,结果表明,在HNTs表面成功负载了氮掺杂纳米二氧化钛,研磨和滴加两种方式下制备的Ti02氮的原子摩尔百分含量分别为2.3%、4.1%,钛的原子百分含量分别为2.43%、6.52%。研究了其在模拟太阳光下,光催化降解甲基橙和苯酚的光催化性能。结果表明,采用研磨方式和滴加方式制备的N-doped-TiO2/HNTs催化剂,氮的相对含量分别为0.45%、2.09%。光照300 min后,对甲基橙的去除率分别为8.55%、9.82%;光照150 mmin后,对苯酚的去除率分别为40.38%、74.42%。

【Abstract】 Halloysite nanotubes (HNTs) is a kind of natural aluminum silicate nanotubes with hollow structure,low price.It is right suitable for nano reactor for large space in HNTs’lumen and HNTs’high aspect ratio. It is also suitable for catalyst carrier because of its relatively large surface area and silicon aluminum frame structure.On the structure characteristics of as the research object, we prepared loaded type of nano-copper oxide catalyst and nano-zinc oxide catalyst using HNTs’lumen as template by dropping the filling method and prepared loaded type of nano-titanium dioxide catalyst using the surface of HNTs by reactor gas phase deposition method using the kettle vapor, meanwhile, studying its catalytic performance respectively.Study on the structure and physical properties of HNTs by XRD, FT-IR, TGA, SEM, TEM, BET and other characterization methods, result shows that the domestic HNTs which we used has a length of 200-500 nm, outer diameter of 50~70 nm, inner diameter of 15~25 nm,the specific surface area of 33.8m2/g. The tubular structure of HNTs remains intact after calcining 3 hours under 800 ℃, showing that HNTs has good thermal stability. The tubular structure of HNTs is still intact by the water solution whose pH is 1 or 13 dealing under 100 ℃, showing that HNTs has good acid and alkali resistance.With the hollow tublar structure of HNTs as template, preparing the nano-copper oxide supported catalys(CuO/HNTs) and nitrogen-doped-zinc oxide supported catalyst (N-doped-ZnO/HNTs) in HNTs’lumen by the add filling method. Analysis the CuO/HNTs and N-doped-ZnO/HNTs by XRD, FI-IR, Uv-vis, SEM, TEM, EDX, showing that the nanometer copper oxide nano particles, Zinc Oxide successful load to HNTs in the lumen, and the amount of nitrogen doped N-doped-ZnO/HNTs is 1.2%. Study on the catalytic performance of CuO/HNTs ring by hexyl ketone in reaction to 2-ketone of cyclohexene. The result shows that the conversion rate of CuO/HNTs is above 99%, selective is 98%. Study on the photocatalytic properties of N-doped-ZnO/HNTs under simulated sunlight, result shows that the methyl orange degradation rate of N-doped-ZnO/HNTs was 70% after illumination of 120 min.We prepared the N-doped-TiO2/HNTs using the HNTs as a template by the vapor deposition method that we invented. Then analysis the N-doped-Ti02/HNTs by the characteristic method of XRD, FI-IR, Uv-vis, SEM, TEM, EDX. Study on its photocatalytic performance by photocatalytic degradation of methyl orange and phenol under simulated solar light. The result showed that the nitrogen content of the N-doped-TiO2/HNTs which prepared by the different way is 2.3%、4.1%, the removal rate of methyl orange is 8.55%、9.82%, the removal rate of phenol is 40.38%、74.42%, respectively.

  • 【网络出版投稿人】 扬州大学
  • 【网络出版年期】2016年 06期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络