节点文献

永磁同步直线电机的驱动与控制策略研究

Research on Control Strategy and Drive of the Permanent Magnet Synchronous Linear Motor

【作者】 彭瑞

【导师】 曾岳南;

【作者基本信息】 广东工业大学 , 控制科学与工程, 2015, 硕士

【摘要】 永磁同步直线电机(PMSLM)相较于旋转电机,具有高速度、高精度、大推力以及直接驱动等许多优点,在半导体制造、高精度数控机床、印刷设备等许多领域有广阔的应用前景。但直线电机因其结构特点以及采用“零传动”的驱动方式,由负载扰动、系统参数摄动以及定位力扰动等因素形成的推力波动将直接影响其伺服系统低速时的速度平稳性以及定位精度,严重制约着直线电机广泛应用于工业实践。因此本文从控制角度出发,对于如何提高直线电机伺服系统的鲁棒性问题进行了研究,并进行了实验验证。本文首先分析了永磁同步直线电机的基本结构以及工作原理,采用坐标变换思想,在同步旋转坐标系(dq坐标系)下建立了电机的数学模型,引入矢量控制理论,分析并确定采用id=0的控制策略,并在此基础上详细阐述了电压空间矢量脉宽调节(SVPWM)技术。在由内而外地分析了直线伺服系统的三环控制结构的基础上,提出了永磁同步直线电机的速度控制策略。在速度控制器设计中,采用滑模—神经网络双自由度控制器取代传统单自由度PI控制器,利用滑模控制器的快速性使得系统具有良好的动态跟踪性能;采用BP神经网络控制器作为输出反馈控制器,对系统参数摄动以及外在阻力等不确定因素进行有效抑制,削弱滑模控制引起的系统抖振,以此来提高系统的鲁棒性。同时针对永磁同步直线电机定位力引起的推力波动问题,本文提出了一种基于BP神经网络的推力波动抑制策略,通过设计BP神经网络推力波动观测器来有效地抑制推力波动问题,以此来削减干扰源,进一步减少系统抖振,改善系统性能。利用仿真软件Matlab对上述理论方法进行了仿真验证。最后,本文以TI高速电机控制芯片TMS320F2812为控制核心,基于实时操作系统DSP/BIOS,详细地介绍了永磁同步直线电机伺服控制系统的软硬件系统的设计以及实现方法。搭建了控制系统并进行了实验调试及实验效果评估,实验结果验证了控制方案的正确性,为日后进一步系统优化及控制算法改进等工作奠定了基础。

【Abstract】 Permanent magnet synchronous linear motor(PMSLM) compared to the rotary motor has many advantages such as high-speed, high-precision, high-thrust, direct drive and so on. It has broad application prospects in semiconductor manufacturing, precision CNC machine tools, printing equipment and many other areas. However, because of the structural characteristics of the linear motor and using the "zero transmission" drive way, the thrust ripple caused by load disturbances, system parameter perturbation, positioning force and other disturbance factors will directly affect the stability of low speed and positioning accuracy of the servo system, severely limiting its widespread use in the industrial practice. Therefore, from the view of control point, the problem of how to improve the robustness of the linear motor servo system is studied, and verify it by experiments.At first, this paper analyzes the basic structure of the permanent magnet synchronous linear motor and its works principle. Then, using the idea of coordinate transformation, the mathematical model of linear motor is established in synchronous rotating coordinate system(dq coordinate system). Introducing the vector control theory, analyze and determine to use the id= 0 control strategy, and on this basis, elaborate the voltage space vector pulse width (SVPWM) control technology. Based on analyzing the structure of linear servo three loop control system from inside loop to outside loop, propose a permanent magnet synchronous linear motor speed control strategy. In the design of the speed controller, use the sliding-neural network two degrees freedom controller to replace the traditional single degree freedom PI controller. Sliding mode controller makes the system fast and has good dynamic tracking performance; using BP neural network controller as an output feedback controller for the system, effectively suppress the parameter perturbation, external resistance and other uncertainties, at the same time weaken the system chattering caused by sliding mode control, improving the robustness of the system. Meanwhile, against the thrust ripple caused by permanent magnet synchronous linear motor positioning force, this paper presents a thrust ripple suppression strategy based on BP neural network. Designing a BP neural network force ripple observer can effectively restrain the thrust ripple, reduce the interference source and further reducing the system chattering, improving the system performance. Use simulation software Matlab verify the above theory.At last, based on TMS320F2812’s DSP/BIOS, introduce the design method and the implementation method of permanent magnet synchronous linear motor servo control hardware and software system in detail. Build a control system and conduct experiments debugging and experiments assess. The experimental results demonstrate the effectiveness of the control strategy, laying the foundation for further system optimization, improving control algorithms and other works.

  • 【分类号】TM359.4;TP273
  • 【被引频次】19
  • 【下载频次】857
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络