节点文献
卫星姿态机动非线性建模与分力合成振动抑制
Study on Attitude Maneuver Nonlinear Dynamic Modeling and Component Synthesis Vibration Suppression
【作者】 刘延杰;
【导师】 崔祜涛;
【作者基本信息】 哈尔滨工业大学 , 飞行器设计, 2013, 硕士
【摘要】 近些年来,空间科学的发展越来越迅速,诸如太阳能电池阵、柔性机械臂等一类挠性附件的应用也逐渐广泛开来。挠性结构的应用,破坏了航天器的刚度,使得原来基于纯刚体得到的动力学模型不再适用,而与挠性伴随而来的,是卫星姿态机动方程的非线性问题。除此之外,由于挠性附件在空间中极易受到干扰而发生振动,并且不能在短时间内衰减,这给航天器的姿态精度控制带来了很大的困难,而与之相对立的却是人们对航天任务的精度要求越来越高。因此,挠性卫星的非线性建模和振动抑制问题就变得十分重要。本文针对以上两个问题,从以下三个方面展开研究:首先,对挠性卫星姿态机动进行动力学建模,具体过程为:利用有限元的方法将柔性体的弹性位移表征为节点位移列阵的形式;运用矢量力学的基本方程表征中心刚体的运动;利用拉格朗日法建立系统的姿态机动方程和振动方程。由于用有限元法得到的方程阶数很高,不利于后面的仿真分析,所以还要进行降维处理。然后,阐述分力合成主动振动抑制法的几个基本定理,并对同时抑制多阶模态和方法的鲁棒性进行简介。最后,将分力合成法应用于挠性卫星的大角度姿态机动中。首先将模型简化为线性系统,验证分力合成法的有效性;假设到分力合成控制器对振动的抑制作用,不妨将振动量视作小量,忽略高阶小量之后,姿态机动方程简化为线性的,基于以上考虑,可以将线性系统下解得的分力合成控制器作用在非线性系统中,观察分力合成主动振动抑制法对非线性系统的作用结果。最后,用分力合成法的鲁棒性来消除由于非线性系统的频率误差而造成的残余振动。
【Abstract】 In recent years, the applications of flexible accessories are quite widely with therapid development of space science, such as solar arrays, flexible manipulator. Theapplication of the flexible structure damaged the stiffness of the spacecraft, making theoriginal dynamic modeling based on rigid body not applicable. Accompanied with theflexibility, the equation of the Spacecraft is nonlinear. In addition, the accuracy controlof the Spacecraft attitude is becoming difficult as flexible accessories in space are veryeasy to vibrate and can not decay in a short time. In the opposite, the requirement of theaccuracy on space missions is becoming strictly. Therefore, the nonlinear dynamicmodeling and the vibration suppression are very important.This thesis make a study from the following three aspects based on the twoquestions.Firstly, establishing a dynamic modeling of the flexible satellite. The specificprocess is: Using the finite element method to characterize the elastic deformation offlexible bodies to be the forms of nodal displacement matrix; Using the basic equationof vector mechanics characterize the motion of the center rigid body; Using theLagrangian equation establish the attitude maneuver equation and vibration equation ofthe system. The simulation analysis is hard to carry because the the the number of theequation dimensions established by the finite element method is too large. So we haveto reduce the dimensions.Secondly, Indicating some basic principles of CSVS, and clarifying the mothed ofvibration suppression of multi-vibration mode and the robustness of the CSVS.Finally, Using CSVS in the maneuver of the flexible satellites. Simplifying themodeling into the linear equation, verificating the CSVS. Considering that the CSVScontroller can suppress the vibration, the vibration can be ignored, then the nonlinearequation can be simplified to be the linear equation. Based on the above consideriton,the CSVS controller designed in linear situation can be used in the nonlinear situation,observing the result of the CSVS. Lastly, Using the robustness of the CSVS suppress theresidual vibration caused by the imprecise frequency.