节点文献
气垫船航行控制特性的非线性分析方法研究
Research on Nonlinear Analysis Method of Navigation Control Characteristics of Air Cushion Vehicle
【作者】 李宁;
【导师】 付明玉;
【作者基本信息】 哈尔滨工程大学 , 控制理论与控制工程, 2011, 硕士
【摘要】 全垫升气垫船就是船体全部由气垫支撑而和水面完全脱离,采用空气推进器推进的高性能船舶。全垫升气垫船具有独特的水陆两栖能力,在军事和民用方面都有着广泛的用途。全垫升气垫船具有独特的水陆两栖能力,在军事和民用方面都有着广泛的用途。为适应新时期军事战略方针的要求,提高军备在海上执行各项任务的能力,对气垫船的研究发展十分必要。气垫船不但是高速船而且是两栖船。这两种特性可以对上陆抢滩任务的速度有较大的改善。作为战场上的急先锋,气垫船登陆艇更对海军的纵向突进有较大帮助。其次,气垫船特别适于水雷战。由于结构的特殊性,全垫升气垫船在操纵方面与常规船舶有很大差别。在回转时,气垫船的一舷漏气,不仅造成其横倾,而且由于船悬浮在水面上,船体与水面之间的阻力很小,因而船会发生严重偏航,船头很容易改变方向。航行中一旦操纵不当,气垫船就会高速回转并侧滑,处于危险的航行状态,甚至翻船。因此,在理论上对全垫升气垫船运动非线性特性进行分析具有十分重要的意义。本文为了研究气垫船的稳定性,首先建立了气垫船的数学模型,并对气垫船模型进行仿真,应用龙格库塔法解算运动方程组,采用冻结解冻算法思想实现运动坐标系和固定坐标系之间的转换,仿真结果验证了模型的准确性。其次,以李亚普诺夫稳定性理论为基础建立了回零扰动系统分析理论。建立直航扰动非线性数学模型,根据其扰动项特点,确定为回零扰动系统。对不同航速下的直航稳定性进行了分析,用仿真结果验证了分析所得结论的准确性。最后,对舵力模型进行了适当的变形,建立了操舵回转的非线性数学模型,根据模型特点,确定为不回零扰动系统。应用不回零扰动理论对气垫船在不同航速下操不同舵角的稳定性进行了理论分析,在保守的条件下得出了气垫船甩尾最小舵角值的范围。论文所研究的气垫船非线性特性分析方法与结论,为保证气垫船安全航行及控制器设计提供了强有力的理论依据。
【Abstract】 The amphibious air cushion vehicle (ACV) is lifted from ground or water surface by air cushion and propelled by aerial propellers. ACV has amphibiousness, so it is widely used in both the civilian fields and military fields. Because of the structural specificity, as for maneuver ACV is very different from a general ship. Transverse inclination will be induced because of air leakage from one side of shipboard when ACV is turning, and great slip angle will be brought since the less resistance between the ship and water. ACV is apt to turn with high speed and sideslip once it is operated improperly, so it will turn into dangerous running state extremely turnover. So, the analysis of ACV’s nonlinear characterstics in theory has great of significance.First, the mathematical model of the hovercraft is established to study stability of ACV in this paper. Simulation of the hovercraft is established. The motion equations are solved by means of Runge-Kutta method, and the transform between fixed coordinate and motion coordinate is realized with freeze-defreeze arithmetic, and the accuracy of the model is verified.Second, the theory of vanishing perturbation is established by the theory of stability of Lyapunov. The perturbation nonlinear direct sailing mathematical model of ACV is established and make sure it is vanishing perturbation system base on the characteristic of perturbation. The result of stability of ACV at different pace is got and make sure the veracity of the result.At last, transform the model of rudder and established the nonlinear rotary steering mathematical model of ACV, make sure it is nonvanishing perturbation system base on the characteristic of the model. The least rudder angle of ACV when it is steering steadily at different pace and different rudder angle is got by the theory of nonvanishing perturbation theroy.The research method and result of ACV in this paper provides theoretical basis on hovercraft controller design for the future.
【Key words】 Air cushion vehicle; Nonlinear system; Motion modeling; Ship’s maneuverability;