节点文献

非线性微分系统正解的存在性

Existence of Positive Solutions for Nonlinear Differential System

【作者】 杨凤勉

【导师】 刘衍胜;

【作者基本信息】 山东师范大学 , 基础数学, 2008, 硕士

【摘要】 近年来,在数学、物理、化学、生物学、医学、经济学、工程学和控制论等许多科学领域出现了各种各样的非线性问题,在解决这些非线性问题的过程中,逐渐产生了现代分析数学中非常重要的方法和理论,主要包括:半序方法、拓扑度方法、锥理论和变分方法等,这些方法成为当今解决科技领域中层出不穷的非线性问题所需的富有成效的理论工具,尤其在处理应用学科中提出的各种非线性方程中发挥着不可替代的作用.本文主要利用非线性泛函分析的拓扑度方法研究微分方程边值问题,其中包括奇异边值问题.有关微分方程边值问题解的存在性、正解的存在性和唯一性在二十世纪八十年代以来得到了广泛的研究(如文[4]-[31]).在此基础上,本文进一步研究了微分方程组边值问题解的存在性.第一章利用全连续算子的不动点指数理论研究了有限区间上微分方程组三点边值问题其中f,g∈C[(0,1)×R+×R+,(0,+∞)],λ∈R+,η∈(0,1),α>0,0<αη<1.R+=[0,+∞).我们给出了适当的条件,得到了两个正解的存在性,并给出了例子说明我们的条件是合理的.其主要结果如下:定理1.2.1若(H1.1)-(H1.3)成立,则对任意r>0,存在入(r)>0,使当任意λ∈(0,λ(r))时,微分系统BVP(1.1.1)至少存在两个正解(x1,y1)和(x2,y2)且满足0<‖(x1,y1)‖<r<‖(x2,y2)‖.第二章利用范数形式的锥拉伸与锥压缩不动点定理研究了p-laplacian算子方程组边值问题多个正解的存在性,其中(?)1,(?)2:R→R是单调递增同胚映射,且(?)1(0)=0,(?)2(0)=0,f,g∈C[R+×R+,(0,+∞)],R+=[0,+∞),a,b∈C[(0,1),R+]且在(0,1)的任意子区间上a(t),b(t)≠0.在文献[11]中作者考虑此方程组问题得到了一个正解的存在性结果,本文在文献[11]-[16]的基础上进一步考虑这个问题,得到了两个正解的存在性结果.其主要结果如下:定理2.2.1若(H2.1)-(H2.6)成立,则微分方程组BVP(2.1.1)至少存在两个正解(x1,y1)和(x2,y2)且满足0<‖(x1,y1)‖<H0<‖(x2,y2)‖.定理2.2.2若(H2.1)-(H2.3)和(H2.7)-(H2.9)成立,则微分方程组BVP(2.1.1)至少存在两个正解(x3,y3)和(x4,y4)且满足0<‖(x3.y3)‖<(?)<‖(x4,y4)‖.最后一章利用严格集压缩算子的不动点指数理论研究了含参数的p-Laplacian算子奇异边值问题(SBVP)其中西φp(u)=|u|p-2u.p>1,α,β,γ,δ>0,f∈C[(0.1)×(0,+∞),R+],R+=(0,+∞).并给出适当的条件(H3.1)和(H3.2)考虑了βδ≠0时奇异边值问题(3.1.1)(3.1.2)正解的存在性,其主要结果如下:定理3.2.1若条件(H3.1)和(H3.2)成立,那么对任意r>0,存在λ(r)>0,使当任意λ∈(0,λ(r))时,奇异边值问题(3.1.1)(3.1.2)至少存在两个正解u(t)和v(t)满足0<‖u(t)‖<r<‖v(t)‖.

【Abstract】 In last few years, more and more nonlinear problems have resulted from mathematics , physics, chemistry, biology, medicine, economics, engineering, sybernetics and so on.In solving these problems, many important methods and theory such as partial ordering method, topological degree method, the theory of cone and the variational method have been developed gradually. They become very effective theoretical tool to solve many nonlinear problems in the fields of the science and technology. And what is more, they are important approaches to study nonlinear integral equations.This paper mainly investigates the existence of positive solutions for boundary value problems of nonlinear differential systems, including the singular boundary value problems by using topological degree method. The existence and uniqueness of positive solutions for differential equations have been considered extensively for last twenty years ([4]-[31]). This paper discusses the problems of differential systems more generally on the basis of above references.Chapter 1 investigates the existence of positive solutions for three-point boundary value problem of differential system on by using fixed point index theoremwheref,g∈C[(0,1)×R+×R+, (0,+∞)],λ∈R+,η∈(0,1),α> 0, 0 <αη< 1, R+ = [0,+∞). The main result is given in follow: Theorem 1.2.1 Suppose (H1.1)-(H1.3) hold. Then for any r > 0, there existsλ(r) > 0 such that BVP(1.1.1) has at least two positive solutions (x1,y1) and (x2,y2) satisfying 0 <‖(x1,y1)‖< r <‖(x2, y2)‖asλ∈(0,λ(r)).By using cone expansion and conpression theorem, Chapter 2 investigates the existence of positive solutions for boundary value systems with p-Laplacianwhere (?)1 and (?) : R→R are the increasing homomorphisms and positive homomorphisms , (?)1(0) = 0, (?)2(0) = 0,f,g∈C[R+×R+, (0, +∞)], R+ = [0, +∞). a,b∈C[(0,1), R+]. The main results are as follows:Theorem 2.2.1 Suppose (H2.1)-(H2.6) hold. Then BVP(2.1.1) has at least two positive solutions (x1,y1) and (x2,y2) satisfying 0 <‖(x1,y1)‖< H0 <‖(x2,y2)‖.Theorem 2.2.2 Suppose (H2.1)-(H2.3) and (H2.7)-(H2.9) hold. Then BVP(2.1.1) has at least two positive solutions (x3,y3) and (x4,y4) satisfying 0 <‖(x3, y3)‖< (?)<‖(x4,y4)‖.Chapter 3 investigates the existence of multiple positive solutions for singular boundary value problem with p-Laplacianwhereφp(u) =|u|p-2u, p > 1,α,β,γ,δ> 0,f∈C[(0,1)×(0, +∞), R+], R+ = [0, +∞). The main result is given in follow:Theorem 3.2.1 Suppose (H3.1) and (H3.2) hold, then for r > 0. there existsλ(r) > 0, such thatλ∈(0,λ(r)) SBVP(3.1.1)(3.1.2) has at least two positive solutions u(t) and v(t) satisfying 0 <‖u(t)‖< r <‖v(t)‖.

  • 【分类号】O175.8
  • 【下载频次】52
节点文献中: 

本文链接的文献网络图示:

本文的引文网络