节点文献
厦门港浮游动物对浮游植物的摄食压力研究
Studies of Zooplankton Grazing Impacts on Phytoplankton in Xiamen Harbor
【作者】 杨位迪;
【导师】 林元烧;
【作者基本信息】 厦门大学 , 海洋生物, 2007, 硕士
【摘要】 本研究于2004年11月、2005年3月、5月、8月、11月及2006年3月在厦门港海域调查了浮游生物的种类组成、数量及其季节变化;2005年3月、5月、8月、11月航次采用稀释法研究浮游植物的潜在最大生长率、微型浮游动物对浮游植物的摄食率和对浮游植物现存量的摄食压力;2005年5月、8月、11月及2006年3月航次运用肠道色素法测定桡足类对浮游植物的摄食压力。主要研究结果如下:1厦门港浮游植物组成及其季节变化本研究共鉴定厦门港有浮游植物78种,其中硅藻30属72种,甲藻2属5种,蓝藻1属1种。浮游植物总细胞数的周年变化曲线呈单峰型。冬季,总细胞数最低,为23×103 cell·m-3;夏季总细胞数最高,为6,129×103 cell·m-3。硅藻在四季中所占的比例最高,均达到97%以上。同时优势类群呈现明显的季节演替,只有中肋骨条藻在四季中均为优势种。冬季以圆筛藻属为第一优势类群;春季,随着水温升高,角毛藻属取代圆筛藻属;夏季,骨条藻属的种类占浮游植物生物量84.76%,呈现出绝对优势;秋季,骨条藻属的数量下降,角毛藻属重新成为第一优势类群。2厦门港浮游动物组成及其季节变化本研究共鉴定出浮游动物106种(类)。浮游动物总生物量和总丰度四季都较高,6个航次平均生物量为325.17 mg·m-3,平均丰度为3,555.43 ind·m-3,其周年变化均呈明显的双峰型,冬季和夏季较低,春季和秋季较高。其中桡足类是厦门港浮游动物最重要的优势类群,周年所占比例均较高;其次是浮游幼虫,但其丰度季节变化较大,秋冬季较高,夏季最低。3厦门港浮游植物生长率及微型浮游动物对浮游植物的摄食压力厦门港表层水体中浮游植物潜在最大生长率,8月最大,为1.44 d-1,3月最小,为0.46 d-1;微型浮游动物的摄食率也是8月最大,3月最小,分别为0.86 d-1和0.12d-1;微型浮游动物对浮游植物的日摄食量为19.25~965.40μg C·L-1·d-1,相当于浮游植物现存量的18.45~243.18%,相当于初级生产力的31.71~75.80%。微型浮游动物对0.45~20μm粒径浮游植物初级生产力的摄食压力大于对20~200μm粒径的摄食压力,分别为82.38~92.95%和65.35~71.41%。以浮游植物为食的微型浮游动物次级生产力的变化范围为6~162μg C·L-1·d-1,其变化趋势与浮游植物生物量以及潜在初级生产力的变化趋势一致,为8月最高,3月最低。4厦门港桡足类群体对浮游植物的摄食压力厦门港桡足类主要优势种为厦门矮隆哲水蚤(Bestiolina amoyensis)、强额孔雀哲水蚤[Pavocalanus(Paracalanus)crassirostris]、小拟哲水蚤(Paracalanusparvus)、太平洋纺锤水蚤(Acartia pacifica)、真刺唇角水蚤(Labidocera euchaeta)、瘦尾胸刺水蚤(Centropages tenuiremis)。测得10种桡足类[除上述种类外,还包括驼背隆哲水蚤(Acrocalanus gibber)、亚强真哲水蚤(Eucalanus subcrassus)、中华哲水蚤(Calanus sinicus)、精致真刺水蚤(Euchaeta concinna)四种]摄食率范围为1.68~145.36 ng·ind-1·d-1;桡足类群体对浮游植物现存量的摄食压力四季平均为1.69%(变化范围0.06~3.15%),秋季最大,夏季最小。5厦门港微型浮游动物、桡足类群体在厦门港海域能流、物流中的作用根据本研究结果,厦门港海域微型浮游动物对浮游植物现存量的摄食压力为18.45~243.18%;相比之下,桡足类群体仅摄食浮游植物现存量的一小部分(0.06~3.15%,四季平均为1.69%);通过推算,初步绘出春季厦门港XMTS测站磷流的示意图。据此推测,在厦门港海域,微型浮游动物应是海洋次级生产力的主要组成部分:而桡足类群体在能流、物流中的作用问题,需要日后进一步研究桡足类群体对微型浮游动物的摄食情况之后而加以明确。
【Abstract】 Species composition,abundance variety,community structure of phytoplankton and zooplankton were investigated in Xiamen Harbor in six cruises of November 2004,February,May,August,November 2005 and March 2006.Grazing by mirozooplankton on phytoplankton was quantified by using dilution method,in situ, during March,May,August and November 2005.Growth rates of different size-fractionated phytoplankton,grazing rates and food selectivity of microzooplankton and the secondary productivity of microzooplankton were estimated.The grazing rates of copepods were estimated in Xiamen Harbor in four cruises of May,August,November 2005 and March 2006,in situ,by using of gut fluorescence method.The major results were as follows:1.Species composition,abundance variety,community structure of phytoplankton78 species of phytoplankton in total were identified in Xiamen Harbor.Among these,Bacillariophyta(with 72 species representing 30 genera),Pyrrhophyta(with 5 species representing 2 genera)and Cyanophyta(with 1 species representing 1 genus) were identified.The seasonal peak of cell counts of phytoplankton(6,129×103 cell·m-3) was in summer,and in winter cell counts of phytoplankton(23×103 cell·m-3)was lowest.The seasonal succession of major dominant genera was remarkable.The first dominant genus in winter was Coscinodiscus,while both in spring and autumn were Chaetoceros.And in summer the first dominant genus was Skeletonema.The trend of annual variety in diversity index of phytoplankton was similar with that of evenness index of phytoplankton which was converse with that of cell counts of phytoplankton.2.Species composition,abundance variety,community structure of zoooplankton106 species(groups)of zooplankton were recorded,including meroplankton larvae,which were divided into five ecological groups.The average biomass of zooplankton was 325.17 mg·m-3,while the average abundance was 3,555.43 ind·m-3. Their seasonal dynamics showed bimodal with the first peak in May and the second in November.In the present investigation,copepod was the most dominant genus by both the number of species and abundance in total individual of all cruises.Pelagic larvae was the secondary dominant genus.The annual abundance of pelagic larvae was higher in autumn and winter,while lowest in summer.3.The growth rate of phytoplankton and microzooplankton grazing rates in Xiamen HarborThe growth rates of total phytoplankton in the surface water ranged from 0.46 d-1 to 1.44 d-1while microzooplanton grazing rates ranged from 0.12 d-1to 0.86 d-1.Both of them reached the maximum value in August and minimum value in March.The carbon flux consumed by microzooplankton per day were 19.25~965.40μg C·L-1·d-1 as 18.45~243.18%phytoplankton standing stocks and 31.71~75.80%potential primary productivity.Microzooplankton ingested more primary production of 0.45~20μm phytoplankton than that of 20~200μm phytoplankton.The grazing pressure of microzooplankton on primary production produced by 0.45~20μm and 20~200μm phytoplankton were 82.38~92.95%and 65.35~71.41%,respectively.The secondary production of microzooplankton ranged from 6~162μg C·L-1·d-1,which was 16.79~32.04%carbon flux consumed by microzooplankton per day.4.Copepods grazing rates in Xiamen HarborThe dominant species of copepods were Bestiolina amoyensis,Pavocalanus (Paracalanus)crassirostris,Paracalanus parvus,Acartia pacifica,Labidocera euchaeta and Centropages tenuiremis.The grazing rates of 10 species of copepods were determined,in situ,by using of gut fluorescence method.The range of the grazing rates was from 1.68 to 145.36 ng·ind-1·d-1.The annual average of daily grazing rates of the copepod population on phytoplankton was 1.69%of phytoplankton standing stock.The daily grazing rate was highest in autumn(3.15%of phytoplankton standing stock)and lowest in summer(0.06%).5.The role of microzooplankton and copepods in the energy flowing and material cycle in Xiamen HarborIn Xiamen Harbor,microzooplankton consumed 18.45~243.18%of phytoplankton standing stocks,while copepods only ingested a small part of phytoplankton standing stocks(0.06~3.15%).And furthermore,the figure of phosphorus cycle in Xiamen Harbor in spring was primitively designed. Microzooplankton was the main part of the secondary productivity in Xiamen Harbor; and the role of copepods in the energy flowing and material cycle in Xiamen Harbor need to be further studied after the investigatin of grazing rates of the copepod population on microzooplankton.
【Key words】 Microzooplankton; Copepod; Dilution; Gut pigment; Xiamen Harbor;
- 【网络出版投稿人】 厦门大学 【网络出版年期】2008年 08期
- 【分类号】Q948.8;Q958.8
- 【被引频次】12
- 【下载频次】509