节点文献

飞轮储能系统机电耦合非线性动力学研究

Study on Nonlinear Electromechanical Dynamics of Flywheel Energy Storage System

【作者】 鞠立华

【导师】 蒋书运;

【作者基本信息】 东南大学 , 机械制造及其自动化, 2005, 硕士

【摘要】 飞轮储能技术具有电能转换效率高、充放电快捷、不受地理环境限制、不污染环境、单位质量储能密度大等突出优势,在电力调峰;电动汽车的飞轮电池;风力、太阳能等发电系统的不间断供电等方面,应用前景广阔。追求大储能量,提高飞轮储能密度使得飞轮系统正向着高速化、大功率方向发展(如国际上飞轮转速可达20万转/分以上)。飞轮转子由于振动引起轴心位置的变化,影响着电磁场参数,而电磁场参数的变化又影响转子的运动与振动形态,两者交互作用。电机的电磁参数与飞轮机械系统的动力参数构成参数耦合,产生自激振动,影响飞轮系统的动力学性能,它不仅降低系统的运行稳定性,甚至会导致灾难性事故。现有的飞轮转子动力学模型中均略去电机参数对转子运动的影响,回避复杂的机电耦合问题,因此有很大的近似性与片面性。针对飞轮动力学研究现状,本文围绕飞轮系统机电耦合动力学而开展工作:(1)基于机电分析动力学基本原理,由广义拉格朗日-麦克斯韦方程建立永磁-机械轴承混合支承式飞轮储能系统的机电耦合非线性动力学数学模型,推导适用于二阶多自由度常微分方程组的四阶隐式龙格-库塔公式,运用高斯-牛顿法求解机电耦合非线性动力学代数方程组,进行飞轮储能系统机电耦合非线性动力学分析。分析结论表明:下阻尼器阻尼系数、电机转子稀土永磁体剩余磁感应强度等参数是影响飞轮储能系统机电耦合共振的关键因素。上阻尼器阻尼系数和支承刚度、下阻尼器支承刚度变化对飞轮储能系统的机电耦合共振频率没有明显的影响,但是使系统的共振峰幅值大幅降低。随下阻尼系数增加,系统的机电耦合共振频率增大,同时系统共振峰幅值下降。随电机转子稀土永磁体剩余磁感应强度增大,系统的机电耦合共振频率减小,同时系统共振峰幅值增大。(2)根据飞轮系统机电耦合动态特性数值模拟结果,选定电机转子稀土永磁体剩余磁感应强度、下阻尼器阻尼系数为设计变量,以|ωmax-ω0|为目标函数,运用坐标轮换法完成飞轮储能系统机电耦合非线性动力学特性解耦设计。研究结论表明:随着电机转子稀土永磁体剩余磁感应强度的减小,相反随着下阻尼器阻尼系数的增大,飞轮储能系统的固有频率逐渐增加,机电解耦设计的目标函数值先逐渐减小,而后逐渐增大;在可接受的误差范围内能够达到系统机电解耦设计的目标。

【Abstract】 The flywheel energy storage technology has many virtues, including high electrical energy transforming efficiency, quick charge and discharge, no pollution, large energy storage density and so on. Its applied foreground is very wide, such as electric power conditioning, electric vehicle flywheel battery, uninterrupted power source etc.Seeking Larger energy storage makes the flywheel system go high rotating speed and large power direction. The flywheel rotor affects electromagnetic field parameters because rotor axes station changes, and the electromagnetic field parameters changing affects the sport and vibration shape of rotor. The electromagnetic parameters of motor and dynamic parameters of flywheel mechanical system compose parameter coupling , and they affect dynamic performance of flywheel system, bring self-excited vibration, decrease system stability and arouse accidents. The existing flywheel rotor dynamics differential equations omit all the influence of motor parameters on rotor running, and the complex electromechanical question is obviated. So these models are very approximative and unilateral. It mainly contains the following.(1) The electromechanical dynamics of Flywheel Energy Storage System with a hybrid permanent magnetic-dynamic spiral groove bearing has been studied by utilizing the fundamental principle of electromechanical analysis dynamics. The functions of the kinetic energy, potential energy, the magnetic energy in air gap of the generator and the energy dissipation of the whole system are obtained, and the differential equations with electromagnetic parameters of Flywheel Energy Storage System are established by applying the extended Lagrange-Maxwell equation. The four-order implicit Runge-Kutta formular to the equations is derived, and the nonlinear algebraic equations are solved by using Guass-Newton method. The analytical solution of an example shows, the lower damping coefficient and the residual magnetic induction of the rotor rare earth permanent magnet play important roles in electromechanical resonance of flywheel rotor system. The variety of the upper damping coefficient, upper bearing stiffness and lower bearing stiffness change unconspicuously the electromechanical resonance frequency of the system, but with an increase of them, the resonance amplitude decreases. With an increase of the lower damping coefficient, the resonance frequency increases,and the resonance amplitude decreases. With an increase of the residual magnetic induction of the permanent magnet, the resonance frequency decreases, and the resonance amplitude increases.(2) The electromechanical uncoupling design of Flywheel Energy Storage System has been done by Coordinate Transforming Method based on flywheel system electromechanical analysis solution. The analytical solution shows, with an decrease of motor rotor permanent magnet residual magnetic inductionand an increase of lower damping coefficient, the resonance frequency of the system increases, and the objective function value decreases early and increases subsequently. The solution of electromechanical uncoupling design can reach the requirement in the range of accepting error.

  • 【网络出版投稿人】 东南大学
  • 【网络出版年期】2007年 02期
  • 【分类号】TM919
  • 【被引频次】8
  • 【下载频次】701
节点文献中: 

本文链接的文献网络图示:

本文的引文网络