节点文献

Some Results on Nonlinear Wave Equation and Hyperbolic Thermoelastic Contact Problem

【作者】 张慧

【导师】 高洪俊;

【作者基本信息】 南京师范大学 , 基础数学, 2006, 硕士

【摘要】 在此论文中,我们研究了带有q-Laplacian算子的非线性波动方程的解的爆破性质;以及在一类双曲型弹性接触问题中得到了一些结果。 在第二章中,我们分别给出了带有q-laplacian算子的非线性波动方程在具有正的和负的初始能量时,它的解的爆破性质。 在第三章中,我们证明了一类双曲型弹性接触问题的弱解的整体存在性,并讨论了弱解的指数衰减性。

【Abstract】 In this paper, we discuss the blowup of solutions for nonlinear q-Laplacian wave equation; We also get some results on a class of semilinear hyperbolic thermoelastic contact problem .In Chapter 2, we study the blowup of solutions for the nonlinear q-Laplacian wave equation with negative initial energy; Meanwhile, we get the solution also blows up with suitable positive initial energy under some conditions.In Chapter 3, we consider a class of semilinear hyperbolic thermoelastic contact problem and prove the existence of the weak solution. Moreover, exponential decay for this semilinear thermoelastic contact problem is obtained.

  • 【分类号】O175.27
  • 【下载频次】20
节点文献中: 

本文链接的文献网络图示:

本文的引文网络