节点文献

二元Golay码的构造

Constructions of the Binary Golay Codes

【作者】 祝杰

【导师】 董学东;

【作者基本信息】 辽宁师范大学 , 应用数学, 2006, 硕士

【摘要】 二元Golay码是二元域上唯一的非平凡多纠错完备码。因此,分析二元Golay码的特点,利用码的有关知识,给出二元Golay码的构造方法具有重要的理论意义和实际意义。 首先,我们回顾了码的有关定义及其性质,然后讨论了二元Golay码的基本性质。 其次,我们总结了由Hamming码,Paley矩阵,QR码,Hexacode码和字典序最小二元码构造二元Golay码的方法。 最后,证明了由一个Steiner系S(5,8,24)可以构造出一个二元Golay码,并证明了构造二元Golay码和构造Steiner系S(5,8,24)是等价的。

【Abstract】 The binary Golay code is a unique nontrivial error-correcting complete code.Therefore, giving the methods of constructing the binary Golay code has important theoretical meanings and practical meanings by analyzing the characteristics of the binary Golay code and using the relevant knowledge of the codes.Firstly, we review some relevant definitions and properties of the codes.Then we discuss basic properties of the binary Golay code.Next,we sum up the methods of constructing the binary Golay code from the Hamming code,the Paley matrix, the QR code, the Hexacode code and the lexicographically least binary code.Finally, we proved that the binary Golay code can be constructed from a S(5,8,24) Steiner system,and that constructing the (24,12,8) binary Golay code is equivalent to constructing a S(5,8,24) Steiner system.

  • 【分类号】O157.4
  • 【被引频次】1
  • 【下载频次】286
节点文献中: 

本文链接的文献网络图示:

本文的引文网络