节点文献
高速公路软土地基沉降量的人工神经网络预测
Prediction of the Settlement of Highway Soft Soil Foundation by Atificial Neural Network
【作者】 赵亚哥白;
【导师】 单炜;
【作者基本信息】 东北林业大学 , 道路与铁道工程, 2006, 硕士
【摘要】 我国软土分布十分广泛,受到地理位置的限制,许多高速公路不得不建筑在软土地基上。软土主要特征:天然含水率高、天然孔隙比大、压缩性大等工程性质。软上地基具有承载能力低、沉降量大、固结完成时间长等不利的工程特性,在软土地基上修筑高速公路广泛存在的软土地基沉降问题一直以来都是公路建设中的一个技术难题。因此深入探讨软土地基的沉降发展规律,利用有限的沉降实测数据,选取合理的预测模型及方法预测地基的后期沉降(包括最终沉降),对于控制施工进度,指导后期的施工组织与安排,具有重要的理论与工程实际意义。 本文以研究软土的特性和软土地基沉降的特点为出发点,通过对公路软土变形机理和沉降进行了理论分析,归纳和总结了影响沉降的因素,介绍当前一些沉降计算的方法。论文结合哈尔滨绕城高速公路软土地基沉降观测资料,采用基于MATLAB的人工神经网络预测方法(ANN),并构造了预测地基沉降的BP神经网络模型。通过样本训练验证以及与传统的分层总和计算方法的对比表明,该方法具有计算精度高、操作简便、泛化性能强等显著优越性,具有广阔的工程应用前景。
【Abstract】 The distribution of soft soil is very extensive in China , many freeways have to be constructed on the soft foundation due to the restrain of the geographic location. The characteristics of soft soil are: high natural moisture content ratio, high natural void level and high compression ratio. The unfavorable characters of soft soil foundation are: the low carrying capacity, high settlement and long consolidation time. The soft soil consolidation problem of the freeway which construct on the soft soil is a technical tickler. So it is very important to theory and actuality by probing the regularity of soft soil, forecast the final consolidation by the forecast model and methodology from the actual settlement data.From to research the soft soil and soft foundation characteristic the dissertation conclude and sum up the factors which influence the consolidation, introduce some calculate methods by conduct the soft soil deformation and settlement theoretical analysis. The dissertation constructs the forecast foundation settlement BP neural network model by the Harbin freeway soft soil foundation settlement observation data and base the MATLAB artificial neural network(ANN) predicting method. Verify and contrast to the traditional layerwise summation method and the sample training, the advantages of the method are: high degree of accuracy, simple operation, and strong property of general engineering, so it has an width apply prospect.
【Key words】 soft soil; Highway; artificial neural networks; settlement prediction;
- 【网络出版投稿人】 东北林业大学 【网络出版年期】2006年 10期
- 【分类号】U416.1
- 【被引频次】19
- 【下载频次】498