节点文献

氧化亚铁硫杆菌脱除烟气中SO2的研究

Study on Flue Gas Desulfurization with Thiobacillus Ferrooxidans

【作者】 谭钦文

【导师】 蒋文举;

【作者基本信息】 四川大学 , 环境工程, 2004, 硕士

【摘要】 烟气脱硫是SO2污染控制的重要技术手段,而生物烟气脱硫以其操作条件简单,运行费用低廉,无二次污染等优点成为超越传统烟气脱硫技术的一个新的技术发展方向。 氧化亚铁硫杆菌因其特有的两重氧化系统的存在成为生物脱硫最重要的菌种之一。目前对生物脱二氧化硫的研究大多仍停留在机理探讨阶段,本文主要研究已有微生物最佳培养条件优化;解决影响脱硫技术效率的关键——生物量供应的固定化微生物技术;采用生物滤池作为烟气脱硫的模拟试验装置;研究经载体固定化的微生物在反应器中的反应特性和SO2脱除效率。 研究表明:活性炭和陶粒对氧化亚铁硫杆菌生长无毒副作用,是性能良好的载体固定化和生物滤池填料,在有载体存在下,微生物比生长速率能达到0.06h-1,与纯细菌培养的最大生长速率无明显差异;摇床培养和气升式反应器都可用于菌种的富集培养和载体固定化。在两种培养条件下,氧化亚铁硫杆菌生长周期都在40~50小时之间,气升式反应器可以维持与摇床培养相当的反应活性。摇床培养反应条件易于控制,适合于细菌提纯和菌液富集,气升式反应器可以大批量地培养微生物,也是固定化微生物的有效手段;氧化亚铁硫杆菌载体培养的最佳条件可以通过试验和氧化亚铁硫杆菌生长响应模型分析获得:在最佳温度和摇床速度不变的条件下,接种比例20%,载体量20g的反应体系可以获得最大的微生物生长速率:成熟的氧化亚铁硫杆菌挂膜载体具有良好稳定的脱硫效率,生物滤池反应器中的烟气净化率稳定时能达到60%以上,经长时间驯化后的生物膜具有一定的烟气SO2净化能力;用生物脱硫动力学模型可以大致估算生物滤池的502脱硫效率,计算得本实验中生物膜烟气脱硫效率约为212.649 502/m3生物膜h;由实验结果分析:氧化亚铁硫杆菌所具有的亚铁氧化能力在微生物脱硫过程中起到了重要作用,是最易于投入实际应用和工业化操作的反应机理。本研究结果为该法的中试研究和工业化应用打下了基础。关键词:氧化亚铁硫杆菌,烟气脱硫,微生物固定化,气升式反应器

【Abstract】 Flue gas desulfurization (FGD) is the most important technical means of SO2 pollution control. And that bio-flue gas desulphurization became a new technical developing area superior to traditional FGD because of its simple operating art, low cost of running fees and zero secondary pollution.Thiobacillus ferrooxidans (T.f) became one of the most important desulphurization bacterium because of its particular double oxidation systems. Now the research for bio-desulphurization still rests on mechanism discussing phase. This paper mainly discusses following items: the selection of optimum culturing condition of T.f.; the key of solving desulfurizaion efficiency-immobilizing bactirum on carrier to improve density of T.f; To adopt bio-filter as simulation tester of FGD; To study the reaction characteristics and efficiency of immobilized T.f filled in bio-reacter.The research indicate: active carbon and pottery grains have no negative influence on T.f growth. They are good carriers and bio-reacter fillings. When carriers exist in the system, the ratio-growth velocity can reach 0.06h’1, there is no abvious difference compare to favourably with pure T.f system; shaking beds and Airlift Tower Loop Reactor(ALR) can be used in T.f enrichment and carrier immobilization. Under these two circumstances, the growth cycle of T.f are between 40 and 50 hours. ALR can keep equivalent reaction activeness. The reaction condition of shaking bed can be easily controlled, which is propitious to T.f purification and enrichment. The ALR can culture a large quantities of T.f and also a effective way of T.f immobilization; the optimum culture condition of T.f carrier immobization can be achieved by experiments and growth response model of T.f; keeping the optimum temperature and shaking velocity(inoculation proportion v/v is 10%, quantity of carrier is 20g), system can reach maximal T.f growth velocity. Mature T.f film bears good and steady desulfurization efficiency, the flue gas purifying rate can reach 60%. After a long time domestication bio-film has a little SO2 oxidation capacity; bio-FGD dynamics model can approximately estimate desulfurization efficiency of bio-filter. In one of experiments the value is212.4g/m3bio-film h; It can be include: ferrite oxidation capacity of T.f act an important role in the process of bio-deslufurization, which is the true mechanism of practical application and industrial operation. The study results will build foundation of extensive experiments research and industrial implication.

  • 【网络出版投稿人】 四川大学
  • 【网络出版年期】2005年 01期
  • 【分类号】X701.3
  • 【被引频次】7
  • 【下载频次】484
节点文献中: 

本文链接的文献网络图示:

本文的引文网络