节点文献

交错阵的线性保持问题

【作者】 李强

【导师】 曹重光;

【作者基本信息】 黑龙江大学 , 基础数学, 2004, 硕士

【摘要】 设F是域,R为实数域,本文主要研究交错阵的两个线性保持问题。当char F≠2时,交错阵就是反对称矩阵。令SK_n(F)为F上所有n×n反对称矩阵构成的空间,M_n(F)为F上所有n×n全矩阵构成的空间,T_n(F)为F上所有n×n上三角矩阵构成的空间。 一方面,在文献[43]中刻画了从M_n(F)到M_n(F)与从T_n(F)到T_n(F)的行列式保持映射,本文则刻画了SK_n(R)到SK_n(R)的行列式保持映射的形式;另一方面,在文献[7]中刻画了当F是特征不为2的无限域,n为偶数时,SK_n(F)到SK_n(F)的保伴随的线性映射,本文则刻画了当char F≠2,n为偶数时,SK_n(F)到SK_n(F)的保伴随的线性映射的形式。

【Abstract】 Let F be a field, R be a real field, this paper mainly studys two linear preserver problems on alternate matrices. When charF 2, alternate matrices is skew-symmetric matrices. Let SKn(F) be the vector space of n x n skew-symmetric matrices over the field F, Mn(F) be the vector space of n x n matrices over the field .F, Tn(F) be the vector space of n x n upper triangular matrices over the field F.On one hand,the mapping preserving determinant is characterised from Mn(F) to Mn(F) and from Tn(F) to Tn(F) in reference [43], however,in this paper, we characterise the forms of mapping preserving determinant from SKn(R) to SKn(K); on the other hand.when F is an infinite field with charF ^ 2 and n is a positive even,the linear mapping preserving adjugate from SKn(F) to SKn(F) is characterised in reference [7],however,in this paper,when char F ^ 2, n is a positive even,we characterise the forms of linear mapping preserving adjugate from SKn(F) to SKn(F).

  • 【网络出版投稿人】 黑龙江大学
  • 【网络出版年期】2005年 01期
  • 【分类号】O151.21
  • 【下载频次】124
节点文献中: 

本文链接的文献网络图示:

本文的引文网络