节点文献

成形铣刀状态分析神经网络模型的研究与仿真

【作者】 陈超

【导师】 黄建龙;

【作者基本信息】 兰州理工大学 , 机械制造及其自动化, 2004, 硕士

【摘要】 随着制造业自动化程度的不断提高,带来许多制造中存在的需解决的新问题,其中包括刀具磨损、破损。在早期的机械加工中,全凭操作人员观察刀具,更换刀具,但在现代化、连续自动化生产系统中,刀具的破损不仅会导致机床的功能失效,还会构成整个系统的故障。因此,预测刀具的磨损和破损的产生,显得十分紧迫。 本文建立了成形铣刀状态分析的神经网络模型。首先对铣刀状态进行了分类,描述了各种状态的特征,并对影响因素进行了详细的分析。其次,针对成形铣刀常见的典型的四类状态,选取了与刀具状态密切相关的特征物理量作为神经网络的学习样本,即声发射信号、切削力信号、功率信号等。 神经网络良好的非线性逼近能力、泛化功能可对铣刀磨损状态进行分析。神经网络通过一系列学习样本的训练来使其具有诊断功能。本文建立了神经网络模型,并对模型的建立进行了充分的分析。由于神经网络结构的可拓展性,此模型可用于其它铣刀状态的分析。借助于MATLAB神经网络工具箱对训练好的网络进行仿真,得出各种敏感特征参数对成形铣刀状态影响的仿真曲线。 通过该项目的研究,提供用于成形铣刀状态分析的模型,证明利用神经网络模型对成形铣刀状态的诊断是完全可行的。由于神经网络结构的可拓展性,对其它刀具状态的诊断也成为可能,研究证明该模型能有效地提高加工质量及效率。

【Abstract】 Along with automation in manufacturing industry, many industry problems have been generated and include tool wear and failure. The operate-person observed tool and replaced it in the early period of machining. However, in automatic manufacturing system, the tool-failure causes invalid of machine function and the whole system’s failure. Therefore, the prediction of tool wear and failure is very urgent.In this paper, the condition analysis of shape-milling tool is set up based on artificial neural network. First of all, the conditions are classed and kinds of features are described and influence factors are detailed analyzed. Moreover, the feature physical parameters are selected in view of four typical conditions of shape-milling tool, namely acoustic emission signal, cutting force signal and power signal.The neural network can analyze shape-milling tool condition because of better nonlinear approachable and generalization ability. It diagnoses function through serious training of learning samples. The neural network model is set up and analyzed. The model can use to analyze other milling tool condition due to expand. The simulation graphs are drawn by means of MATLAB neural network toolbox.The research provide neural network model of shape-milling tool condition. The model is completely possible to analyze shape-milling tool condition, Because neural network construction’s expand, it can be used in other tool condition. The model improves machining quality and efficiency.

  • 【分类号】TG714
  • 【被引频次】1
  • 【下载频次】171
节点文献中: 

本文链接的文献网络图示:

本文的引文网络