节点文献

基于深度卷积和多层尺度特征融合的冠脉造影图像血管分割

Vessel Segmentation in Coronary Angiography Images Based on Deep Convolution and Multi-Level Scale Feature Fusion

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 许洋翟楠楠倪维臻谭强王金甲

【Author】 Xu Yang;Zhai Nannan;Ni Weizhen;Tan Qiang;Wang Jinjia;College of Information Science and Engineering, Yanshan University;Hubei Key Laboratory of Intelligent Robot (Wuhan Institute of Technology);Yangtze River Delta HIT Robot Technology Research Institute;Department of Cardiology, The First Hospital of Qinhuangdao;

【通讯作者】 王金甲;

【机构】 燕山大学信息科学与工程学院智能机器人湖北省重点实验室(武汉工程大学)长三角哈特机器人产业技术研究院秦皇岛市第一医院心内科

【摘要】 冠状动脉造影是诊疗冠心病等心血管疾病的一种重要手段,快速而准确的血管分割对诊疗心血管疾病具有十分重要的意义。针对现有冠状动脉造影血管分割算法对细微血管的分割能力不强、分割血管的连通性较差、抗噪声及伪影能力弱等问题,本研究吸取了Transformer结构长距离依赖与跨域跳转连接的优点,分别采用上下文分层聚合和多尺度特征融合的方法,对U型分割网络进行改进,称HAM-UNet。首先,采取必要的图像预处理方法,对原有的冠脉造影图像进行一些特征强化,并扩大了实验数据;然后,将预处理好的图片以HAM-UNet的方法进行分割。编码器同时结合深度卷积与残差结构,可以高效的捕获全局特征并有效增强网络细节感知力,提升分割精度的同时提高分割连通性。解码器进行了多尺度的特征融合,并且加入上采样跳转连接,网络的全局感知得到提高,有效降低了无关信息的影响。所使用数据集来自于天津市医科大学总医院的221张图像和秦皇岛市第一医院的494张图像,在两个数据集上,HAM-UNet算法的准确率分别为0.983和0.998,IOU分别为0.857和0.908,Dice分数分别为0.842和0.883;综合分割性能比U-Net和Att-UNet等算法有较大提升。

【Abstract】 Coronary angiography is a significant diagnostic and therapeutic modality for coronary heart disease and other cardiovascular diseases. The accurate and expeditious segmentation of blood vessels is of paramount importance to the diagnosis and treatment of cardiovascular diseases. Existing coronary angiography vessel segmentation algorithms have been shown to have several shortcomings, including a weak segmentation ability for fine vessels, poor connectivity of segmented vessels, and a lack of resistance to noise and artefacts. This study proposes an enhanced U-shape segmentation network, termed HAM-UNet.UNet, which utilises the advantages of the Transformer structure′s long-distance dependence and cross-domain hopping connectivity. The proposed methods include contextual hierarchical aggregation and multiscale feature fusion. Firstly, a series of image preprocessing methods are employed to enhance certain features of the original coronary angiography images and expand the experimental data. Then, the preprocessed images are segmented by the HAM-UNet method.The encoder combines both deep convolution and residual structure, which can efficiently capture global features and effectively enhance the network detail perception, thus improving the segmentation accuracy while increasing the segmentation connectivity. The decoder performs multi-scale feature fusion and up-sampling hopping connections, improving the global perception of the network and reducing the influence of irrelevant information.The datasets used are from 221 images from the General Hospital of Tianjin Medical University and 494 images from the First Hospital of Qinhuangdao City. On both datasets, the HAM-UNet algorithm achieves an accuracy of 0.983 and 0.998, respectively. As demonstrated in Figure 8, the IOUs are 0.857 and 0.908, and the Dice scores are 0.842 and 0.883, respectively. This indicates that the overall segmentation performance is superior to that of U-Net, Att-UNet and other algorithms.

【基金】 安徽省机器视觉检测与感知重点实验室开放基金(KLMVI-2023-HIT-13);智能机器人湖北省重点实验室开放基金(HBIR202208);燕山大学秦皇岛市第一医院医工交叉特色专项培育项目(2022-09)
  • 【文献出处】 中国生物医学工程学报 ,Chinese Journal of Biomedical Engineering , 编辑部邮箱 ,2025年01期
  • 【分类号】R318;TP391.41
  • 【下载频次】62
节点文献中: 

本文链接的文献网络图示:

本文的引文网络