节点文献

基于Lyapunov优化的MEC分布式资源管理算法

The Distributed Resource Management Scheme Based on Lyapunov Optimization for MEC Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘蓓胡慧粟欣许希斌

【Author】 LIU Bei;HU Hui;SU Xin;XU Xibin;Beijing National Research Center for Information Science and Technology, Tsinghua University;School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications;Department of Electronics, Tsinghua University;

【机构】 清华大学北京信息科学与技术国家研究中心重庆邮电大学通信与信息工程学院清华大学电子工程系

【摘要】 MEC网络将计算和存储资源下沉到网络边缘,以满足未来6G业务的低时延要求,MEC网络中多维资源的管理和调度决策是提升用户体验的关键。针对MEC网络中的资源管理决策问题,提出了基于Lyapunov优化的分布式资源管理算法。具体来讲,引入任务数据队列及虚拟能量队列,以确保任务执行的公平性,且避免了系统负载过大时造成的过度拥塞问题,并且通过Lyapunov优化理论构建目标函数,基于DDPG算法进行求解。另外,考虑MEC服务器对基于DDPG的决策模型具有不同需求,将异构网络部署在不同的边缘服务器中,构建分布式多连续变量决策模型。仿真结果表明,所使用的分布式决策算法的收敛性和稳定性更优。

【Abstract】 Mobile edge computing(MEC) networks bring computation and storage resources closer to the network edge to meet the low-latency requirements of future 6G services. Efficient management and scheduling of multidimensional resources in MEC networks are key to enhancing user experience. To address the resource management decision-making problem in MEC networks, this study proposes a distributed resource management algorithm based on Lyapunov optimization. Specifically, task data queues and virtual energy queues are introduced to ensure task execution fairness and mitigate excessive congestion under high system loads. The objective function is constructed using Lyapunov optimization theory and solved with a deep deterministic policy gradient(DDPG)-based algorithm. Furthermore, considering that MEC servers have varying requirements for DDPG-based decision models, heterogeneous networks are deployed across different edge servers, creating a distributed multi-continuous variable decision model. Simulation results demonstrate the superior convergence and stability of the proposed distributed decision-making algorithm.

【基金】 国家重点基础研究发展计划(973计划)“6G网络智能化技术研究”
  • 【文献出处】 移动通信 ,Mobile Communications , 编辑部邮箱 ,2025年01期
  • 【分类号】TN929.5;TP18
  • 【下载频次】15
节点文献中: 

本文链接的文献网络图示:

本文的引文网络