节点文献

基于深度复数脉冲神经网络的特定辐射源识别

Specific emitter identification based on deep spiking complex neural network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张乃煜张雅彬查浩然

【Author】 ZHANG Naiyu;ZHANG Yabin;ZHA Haoran;College of Information and Communication Engineering, Harbin Engineering University;

【通讯作者】 查浩然;

【机构】 哈尔滨工程大学信息与通信工程学院

【摘要】 特定辐射源识别在民用频谱管理中起着重要作用。传统的深度神经网络方法在辐射源识别方面面临诸多挑战,包括训练时间长、能耗高以及计算稀疏性低。针对这些问题,设计了一种基于深度复数脉冲神经网络模型,该模型集成了脉冲神经层,并利用复数数据的固有特性增强信号表达能力,显著优化了计算效率并降低了硬件资源需求。测试结果表明,该模型的识别准确率达到了96%,单条数据的平均推理时间为0.19 ms,在模型参数规模、推理速度和推理数据能量消耗上均优于传统神经网络模型。

【Abstract】 Specific emitter identification(SEI) plays a crucial role in civilian spectrum management. Traditional deep neural network methods face many challenges in emitter identification, including extended training duration, high energy consumption, and low computational sparsity. To address these issues, a deep spiking complex neural network(S-CNet) model was designed, which integrates pulse neural layers and utilizes the intrinsic properties of complex data to enhance signal representation capabilities, significantly optimizing computational efficiency and reducing hardware resource requirements. The test results have shown that the recognition accuracy of this model reaches 96%, the average inference time for a single piece of data is 0.19 ms, and it is superior to the traditional neural network models in terms of model parameter scale, inference speed, and inference data energy consumption.

【基金】 国家自然科学基金资助项目(62201172)
  • 【文献出处】 信息对抗技术 ,Information Countermeasure Technology , 编辑部邮箱 ,2025年01期
  • 【分类号】TP183;TN92
  • 【下载频次】6
节点文献中: 

本文链接的文献网络图示:

本文的引文网络