节点文献

分割图像辅助的自监督医学图像配准

Segmented image assisted self-supervised medical image registration

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李宗民王群李泫廷杨超智

【Author】 LI Zong-min;WANG Qun;LI Xuan-ting;YANG Chao-zhi;College of Computer Science and Technology, China University of Petroleum (East China);

【机构】 中国石油大学(华东)计算机科学与技术学院

【摘要】 为解决可形变医学图像配准工作更关注于像素/体素层级的配准,忽略了扫描图像中的结构信息的问题,采用多结构特征提取模块(multi-structure feature extraction, MSFE)。以形变图像的分割图像和固定图像的分割图像作为输入,提取结构信息并反馈给配准神经网络。在此基础上,在配准任务常用的损失函数中加入与MSFE模块搭配的损失函数与分割任务中常用的损失函数以辅助配准。所提方法只参与配准网络的训练阶段,不参与测试阶段,不会增加实际配准时所需的时间。在OASIS Sample Data数据集上的实验验证了方法的有效性。

【Abstract】 To solve the problem that the deformable registration of medical images focuses more on the pixel/voxel level but ignores the structural information in the scanned images, the multi-structure feature extraction(MSFE) module was adopted. The segmented image of the deformed image and the segmented image of the fixed image were taken as input, the structural information was extracted and it was fed back to the registration neural network. The loss function paired with the MSFE module and the loss function commonly used in the segmentation tasks were added to the loss function commonly used in registration tasks to assist with registration. The proposed method is only involved in the training stages of the registration network but not in the testing stages, which means that it does not increase the time required for the actual registration. Results of experiments on the OASIS Sample Data dataset verify the effectiveness of the method.

【基金】 国家重点研发计划基金项目(2019YFF0301800);国家自然科学基金项目(61379106);山东省自然科学基金项目(ZR2013FM036、ZR2015FM011)
  • 【文献出处】 计算机工程与设计 ,Computer Engineering and Design , 编辑部邮箱 ,2025年03期
  • 【分类号】R318;TP391.41;TP18
  • 【下载频次】39
节点文献中: 

本文链接的文献网络图示:

本文的引文网络