节点文献
基于扩散模型的遥感图像变化检测方法
Diffusion model based change detection method for remote sensing images
【摘要】 针对遥感图像人工标注耗时且昂贵的缺点,提出一种两阶段的变化检测方法。通过预训练去噪扩散概率模型来利用这些现成的、未标注的遥感图像信息,利用从扩散模型主干网络U-Net的后半部分编码器中获取的多尺度特征来训练一个轻量级的变化检测头部。通过同时处理不同加噪时间步的遥感图像,基于噪声水平进行加权融合进一步提升模型对变化相关信息的敏感性。在LEVIR-CD和WHU-CD数据集上的对比实验结果表明,该方法有效提高了识别精度。
【Abstract】 A two-stage change detection method was proposed to address the drawbacks of manual labeling of remote sensing images, which is time-consuming and expensive. This readily available, unlabeled remote sensing image information was utilized by pre-training a denoised diffusion probabilistic model to train a lightweight change detection head using multi-scale features obtained from the encoder of the second half of the diffusion model backbone network, U-Net. The sensitivity of the model to change-related information was further enhanced by simultaneously processing remote sensing images with different noise addition time steps and weighted fusion based on the noise level. Comparative experiments on LEVIR-CD and WHU-CD datasets show that the method effectively improves the recognition accuracy.
【Key words】 change detection; deep learning; pre-training; feature fusion; feature extraction; diffusion modeling; unsupervised training;
- 【文献出处】 计算机工程与设计 ,Computer Engineering and Design , 编辑部邮箱 ,2025年02期
- 【分类号】TP751;TP18
- 【下载频次】47