节点文献

基于脆弱性感知的增强对抗训练鲁棒性方法

Robustness of enhanced adversarial training based on vulnerability perception

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 贾婧玥金澎王兵陈兴元

【Author】 JIA Jing-yue;JIN Peng;WANG Bing;CHEN Xing-yuan;School of Computer Science, Southwest Petroleum University;School of Electronic Information and Artificial Intelligence, Leshan Normal University;Key Laboratory of Internet Natural Language Intelligent Processing of Sichuan Province Education Department,Leshan Normal University;

【通讯作者】 陈兴元;

【机构】 西南石油大学计算机科学学院乐山师范学院电子信息与人工智能学院乐山师范学院互联网自然语言智能处理四川省高等学校重点实验室

【摘要】 为防止脆弱样本降低对抗训练模型的鲁棒性和准确率,提出一种从决策边界角度重新加权训练数据的方法。通过迭代搜索获取决策边界附近的对抗样本,由于熵越小,样本的脆弱性越大,为避免扰动干扰和错误分类,提出使用熵评估样本的脆弱性。根据预测分布的熵,按合适的惩罚因子调整每个对抗训练样本的损失,提升脆弱训练样本的训练强度,提升模型的鲁棒性。实验结果表明,所提算法在保持模型准确率的同时,能够显著提高模型的对抗鲁棒性。

【Abstract】 In the process of adversarial training, different samples have different effects on the robustness of the model, and fra-gile samples will reduce the robustness and accuracy of the model. To solve this problem, a method of reweighting the training data from the perspective of decision boundary was proposed. The smaller the entropy is, the greater the vulnerability of the sample is, and it is more prone to be disturbed and misclassified. Therefore, in the training process, the adversarial samples near the decision boundary were obtained by iterative search. According to the entropy of the prediction distribution, the loss of each adversarial training sample was adjusted by an appropriate penalty factor to improve the training intensity of vulnerable training samples, so as to improve the robustness of the model. Experimental results show that the proposed algorithm significantly improves the adversarial robustness of the model while maintaining the accuracy of the model.

【基金】 国家自然科学基金项目(61003206)
  • 【文献出处】 计算机工程与设计 ,Computer Engineering and Design , 编辑部邮箱 ,2025年01期
  • 【分类号】TP18;TP391.41
  • 【下载频次】16
节点文献中: 

本文链接的文献网络图示:

本文的引文网络